Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/169864| Title: | ANALISIS DAN PEMBUATAN MODEL LSTM UNTUK DETEKSI UPWELLING BERBASIS KLOROFIL-A DAN SUHU PERMUKAAN LAUT DI WPP 714 |
| Other Titles: | ANALYSIS AND LSTM MODEL DEVELOPMENT FOR UPELWELLING DETECTION BASED ON CHLOROPHYLL-A AND SEA SURFACE TEMPERATURE IN FMA 714 |
| Authors: | Herdiyeni, Yeni Ahmad, Hafidlotul Fatimah Yudha, Ayyas Mumtaz |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Wilayah Pengelolaan Perikanan (WPP) 714, yang mencakup Laut Banda,
merupakan salah satu kawasan perairan Indonesia yang kaya secara ekologi dan
produktivitas perikanan. Salah satu dinamika oseanografis penting di wilayah ini
adalah fenomena upwelling, yaitu proses naiknya massa air laut yang lebih dingin
dan kaya nutrien ke permukaan. Penelitian ini bertujuan menganalisis karakteristik
upwelling, membangun model deteksi, dan prediksi berbasis data suhu permukaan
laut (SST) dan klorofil-a. Deteksi upwelling dilakukan dengan pendekatan IQR
serta metode Time Window. Klasifikasi intensitas upwelling dikelompokkan
menjadi Low, Medium, dan High. Model deteksi dikembangkan menggunakan
Long Short-Term Memory (LSTM) dan mencapai akurasi hingga 95%. Selain itu,
model prediksi untuk SST dan klorofil-a juga dibangun, dengan hasil evaluasi R²
sebesar 0,892 untuk SST dan 0,648 untuk klorofil-a. The Fisheries Management Area (FMA) 714, encompassing the Banda Sea, is one of Indonesia’s ecologically rich and highly productive fishing grounds. One of the key oceanographic dynamics in this region is the upwelling phenomenon, a process in which cooler, nutrient-rich seawater rises to the surface. This study aims to analyze the characteristics of upwelling and develop detection and prediction models based on sea surface temperature (SST) and chlorophyll-a data. Upwelling detection was performed using the Interquartile Range (IQR) approach combined with the Time Window method. Upwelling intensity was classified into Low, Medium, and High categories. The detection model was developed using a Long Short-Term Memory (LSTM) network, achieving an accuracy of up to 95%. In addition, prediction models for SST and chlorophyll-a were constructed, yielding R² values of 0.892 for SST and 0.648 for chlorophyll-a. |
| URI: | http://repository.ipb.ac.id/handle/123456789/169864 |
| Appears in Collections: | UT - Computer Science |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G6401211146_4856579e617f4c2f9ce289f3c64f200d.pdf | Cover | 824.11 kB | Adobe PDF | View/Open |
| fulltext_G6401211146_490649b114c242df8b7063595b6b6c71.pdf Restricted Access | Fulltext | 3.16 MB | Adobe PDF | View/Open |
| lampiran_G6401211146_26462405c3ea4f68aefd6d9dec9c9940.pdf Restricted Access | Lampiran | 323.07 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.