Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/169864
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHerdiyeni, Yeni-
dc.contributor.advisorAhmad, Hafidlotul Fatimah-
dc.contributor.authorYudha, Ayyas Mumtaz-
dc.date.accessioned2025-08-19T23:04:49Z-
dc.date.available2025-08-19T23:04:49Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/169864-
dc.description.abstractWilayah Pengelolaan Perikanan (WPP) 714, yang mencakup Laut Banda, merupakan salah satu kawasan perairan Indonesia yang kaya secara ekologi dan produktivitas perikanan. Salah satu dinamika oseanografis penting di wilayah ini adalah fenomena upwelling, yaitu proses naiknya massa air laut yang lebih dingin dan kaya nutrien ke permukaan. Penelitian ini bertujuan menganalisis karakteristik upwelling, membangun model deteksi, dan prediksi berbasis data suhu permukaan laut (SST) dan klorofil-a. Deteksi upwelling dilakukan dengan pendekatan IQR serta metode Time Window. Klasifikasi intensitas upwelling dikelompokkan menjadi Low, Medium, dan High. Model deteksi dikembangkan menggunakan Long Short-Term Memory (LSTM) dan mencapai akurasi hingga 95%. Selain itu, model prediksi untuk SST dan klorofil-a juga dibangun, dengan hasil evaluasi R² sebesar 0,892 untuk SST dan 0,648 untuk klorofil-a.-
dc.description.abstractThe Fisheries Management Area (FMA) 714, encompassing the Banda Sea, is one of Indonesia’s ecologically rich and highly productive fishing grounds. One of the key oceanographic dynamics in this region is the upwelling phenomenon, a process in which cooler, nutrient-rich seawater rises to the surface. This study aims to analyze the characteristics of upwelling and develop detection and prediction models based on sea surface temperature (SST) and chlorophyll-a data. Upwelling detection was performed using the Interquartile Range (IQR) approach combined with the Time Window method. Upwelling intensity was classified into Low, Medium, and High categories. The detection model was developed using a Long Short-Term Memory (LSTM) network, achieving an accuracy of up to 95%. In addition, prediction models for SST and chlorophyll-a were constructed, yielding R² values of 0.892 for SST and 0.648 for chlorophyll-a.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleANALISIS DAN PEMBUATAN MODEL LSTM UNTUK DETEKSI UPWELLING BERBASIS KLOROFIL-A DAN SUHU PERMUKAAN LAUT DI WPP 714id
dc.title.alternativeANALYSIS AND LSTM MODEL DEVELOPMENT FOR UPELWELLING DETECTION BASED ON CHLOROPHYLL-A AND SEA SURFACE TEMPERATURE IN FMA 714-
dc.typeSkripsi-
dc.subject.keywordUpwellingid
dc.subject.keywordklorofil-aid
dc.subject.keywordsuhu permukaan lautid
dc.subject.keyworddeep learningid
dc.subject.keywordLong Short-Term Memory (LSTM)id
dc.subject.keywordWPP 714id
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
cover_G6401211146_4856579e617f4c2f9ce289f3c64f200d.pdfCover824.11 kBAdobe PDFView/Open
fulltext_G6401211146_490649b114c242df8b7063595b6b6c71.pdf
  Restricted Access
Fulltext3.16 MBAdobe PDFView/Open
lampiran_G6401211146_26462405c3ea4f68aefd6d9dec9c9940.pdf
  Restricted Access
Lampiran323.07 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.