Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/169378| Title: | Identifikasi Sebaran Spasial Hutan Mangrove Berbasis Algoritma Machine Learning dengan Citra PlanetScope di Kabupaten Langkat |
| Other Titles: | Machine Learning Algorithm-based Identification of Mangrove Forest Spatial Distribution using PlanetScope Imagery in Langkat Regency |
| Authors: | Jaya, I Nengah Surati Ilham, Qori Pebrial GAFFRILA, GANTA |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Tulisan ini menerangkan tentang identifikasi sebaran spasial hutan mangrove di Kabupaten Langkat. Penelitian ini mengintegrasikan data citra PlanetScope dengan data spasial sosio-geo-biofisik untuk mengembangkan model algoritma decision tree of machine learning guna mengidentifikasi sebaran spasial hutan mangrove di Kabupaten Langkat. Model diuji dengan tiga skenario kombinasi variabel: (1) variabel spektral (NDVI, NRGI, NDWI, GNDVI, GARI, ARVI, VDVI, SAVI, CMRI); (2) variabel sosio-geo-biofisik (substrat, salinitas, elevasi, jarak dari sungai, jarak dari jalan); dan (3) kombinasi keduanya. Hasil menunjukkan algoritma terbaik diperoleh dengan menggunakan skenario ketiga dengan kombinasi variabel spektral (NDVI, SAVI, ARVI, VDVI, NRGI) dan variabel sosio-geo-biofisik (substrat, elevasi, jarak dari jalan) menghasilkan performa overall accuracy 94,5% dan kappa accuracy 93%. This paper describes the identification of the spatial distribution of mangrove forests in Langkat Regency. The study integrates PlanetScope image with socio-geo-biophysical spatial data, for developing a decision tree algorithm model of machine learning to identify the spatial distribution of mangrove forests in Langkat Regency. The model was tested with three variable combination scenarios: (1) spectral variables (NDVI, NRGI, NDWI, GNDVI, GARI, ARVI, VDVI, SAVI, CMRI); (2) socio-geo-biophysical variables (substrate, salinity, elevation, distance from rivers, distance from roads); and (3) a combination of both. The study results show that the best algorithm was obtained by using third scenario with a combination of spectral variables (NDVI, SAVI, ARVI, VDVI, NRGI) and socio-geo-biophysical variables (substrate, elevation, distance from roads) produced an overall accuracy of 94.5% and a kappa accuracy of 93%. |
| URI: | http://repository.ipb.ac.id/handle/123456789/169378 |
| Appears in Collections: | UT - Forest Management |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_E1401211116_66a8f2a2112e479c872fc3a62e0217d3.pdf | Cover | 796.03 kB | Adobe PDF | View/Open |
| fulltext_E1401211116_fe6c40cf23fb4419b72b95703afb6d80.pdf Restricted Access | Fulltext | 4.77 MB | Adobe PDF | View/Open |
| lampiran_E1401211116_d0d5efffc81a4657aaa58e2fdd5bdd6f.pdf Restricted Access | Lampiran | 261.81 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.