Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/169378
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJaya, I Nengah Surati-
dc.contributor.advisorIlham, Qori Pebrial-
dc.contributor.authorGAFFRILA, GANTA-
dc.date.accessioned2025-08-15T06:18:41Z-
dc.date.available2025-08-15T06:18:41Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/169378-
dc.description.abstractTulisan ini menerangkan tentang identifikasi sebaran spasial hutan mangrove di Kabupaten Langkat. Penelitian ini mengintegrasikan data citra PlanetScope dengan data spasial sosio-geo-biofisik untuk mengembangkan model algoritma decision tree of machine learning guna mengidentifikasi sebaran spasial hutan mangrove di Kabupaten Langkat. Model diuji dengan tiga skenario kombinasi variabel: (1) variabel spektral (NDVI, NRGI, NDWI, GNDVI, GARI, ARVI, VDVI, SAVI, CMRI); (2) variabel sosio-geo-biofisik (substrat, salinitas, elevasi, jarak dari sungai, jarak dari jalan); dan (3) kombinasi keduanya. Hasil menunjukkan algoritma terbaik diperoleh dengan menggunakan skenario ketiga dengan kombinasi variabel spektral (NDVI, SAVI, ARVI, VDVI, NRGI) dan variabel sosio-geo-biofisik (substrat, elevasi, jarak dari jalan) menghasilkan performa overall accuracy 94,5% dan kappa accuracy 93%.-
dc.description.abstractThis paper describes the identification of the spatial distribution of mangrove forests in Langkat Regency. The study integrates PlanetScope image with socio-geo-biophysical spatial data, for developing a decision tree algorithm model of machine learning to identify the spatial distribution of mangrove forests in Langkat Regency. The model was tested with three variable combination scenarios: (1) spectral variables (NDVI, NRGI, NDWI, GNDVI, GARI, ARVI, VDVI, SAVI, CMRI); (2) socio-geo-biophysical variables (substrate, salinity, elevation, distance from rivers, distance from roads); and (3) a combination of both. The study results show that the best algorithm was obtained by using third scenario with a combination of spectral variables (NDVI, SAVI, ARVI, VDVI, NRGI) and socio-geo-biophysical variables (substrate, elevation, distance from roads) produced an overall accuracy of 94.5% and a kappa accuracy of 93%.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleIdentifikasi Sebaran Spasial Hutan Mangrove Berbasis Algoritma Machine Learning dengan Citra PlanetScope di Kabupaten Langkatid
dc.title.alternativeMachine Learning Algorithm-based Identification of Mangrove Forest Spatial Distribution using PlanetScope Imagery in Langkat Regency-
dc.typeSkripsi-
dc.subject.keyworddecision treeid
Appears in Collections:UT - Forest Management

Files in This Item:
File Description SizeFormat 
cover_E1401211116_66a8f2a2112e479c872fc3a62e0217d3.pdfCover796.03 kBAdobe PDFView/Open
fulltext_E1401211116_fe6c40cf23fb4419b72b95703afb6d80.pdf
  Restricted Access
Fulltext4.77 MBAdobe PDFView/Open
lampiran_E1401211116_d0d5efffc81a4657aaa58e2fdd5bdd6f.pdf
  Restricted Access
Lampiran261.81 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.