Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/168558Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Mas'oed, Teduh Wulandari | |
| dc.contributor.advisor | Guritman, Sugi | |
| dc.contributor.author | Hidayat, Hafilah Rizka Nuha | |
| dc.date.accessioned | 2025-08-10T09:45:20Z | |
| dc.date.available | 2025-08-10T09:45:20Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/168558 | |
| dc.description.abstract | Misalkan M_2 (n) merupakan himpunan semua matriks segitiga atas berordo 2 dengan entri anggota Z_n. Pembagi nol dari M_2 (n), dinotasikan Z(M_2 (n)), merupakan elemen tak nol dari M_2 (n) yang menghasilkan nol jika dikalikan dengan elemen tak nol lain dari M_2 (n). Pembagi nol Z(M_2 (n)) dapat direpresentasikan ke dalam sebuah graf berarah G(M_2 (n)) atau graf tak berarah G ~(M_2 (n)). Di dalam karya tulis ini, ditunjukan bahwa graf berarah G(M_2 (n)) merupakan graf terhubung, jika n=2. Selain itu, untuk graf tak berarah G ~(M_2 (n)) dengan =?p_1?^(e_1 ) ?p_2?^(e_2 )..?p_m?^(e_m ), m=2 dan p_i merupakan bilangan prima berbeda, ditunjukan bahwa tidak ada simpul yang adjacent dengan semua simpul lain. Sedangkan untuk graf tak berarah G ~(M_2 (n)) dengan n=p^k, dengan p bilangan prima, terdapat simpul yang mendominasi. | |
| dc.description.abstract | Let M_2 (n) denote the set of all upper triangular 2×2 matrices over Z_n. The zero-divisor of M_2 (n) denoted by Z(M_2 (n)), are non-zero elements that annihilate some other non-zero element under matrix multiplication. These zero-divisors can be represented as a directed graph (M_2 (n)) or an undirected graph G ~(M_2 (n)). This paper demonstrates that for n=2, the directed graph graph G(M_2 (n)) is connected. Furthermore, for the undirected graph G ~(M_2 (n)), we show that when n=?p_1?^(e_1 ) ?p_2?^(e_2 )..?p_m?^(e_m ) for m=2 and p_i are distinct prime number, no vertex is adjacent to all other vertexes. Conversely, when n=p^k for p prime, there exists a dominating vertex that adjacent to every other vertex in G ~(M_2 (n)). | |
| dc.description.sponsorship | ||
| dc.language.iso | id | |
| dc.publisher | IPB University | id |
| dc.title | Graf Pembagi Nol Matriks Segitiga Atas Berordo 2 dengan Enttri Anggota Z_n | id |
| dc.title.alternative | ||
| dc.type | Skripsi | |
| dc.subject.keyword | graf | id |
| dc.subject.keyword | digraf | id |
| dc.subject.keyword | pembagi nol | id |
| dc.subject.keyword | matriks | id |
| Appears in Collections: | UT - Mathematics | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5401211078_e782f3b5af614f56b8a36aff668d040b.pdf | Cover | 1.18 MB | Adobe PDF | View/Open |
| fulltext_G5401211078_9e477ef37d084f59a6f2c620db756bbe.pdf Restricted Access | Fulltext | 5.29 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.