Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/166959| Title: | Pembangunan Algoritma Decision Tree of Machine Learning dalam Deteksi Deforestasi Mangrove di Kabupaten Langkat |
| Other Titles: | Developing a Machine Learning Decision Tree Algorithm for Mangrove Deforestation Detection in Langkat Regency |
| Authors: | Jaya, I Nengah Surati Ilham, Qori Pebrial Prasetya, Donny |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Penelitian ini menerangkan tentang bagaimana mengembangkan metode
pendeteksi perubahan tutupan mangrove berbasis pendekatan pembelajar mesin
(machine learning). Penelitian dilakukan terhadap kejadian deforestasi yang terjadi
di Kabupaten Langkat pada periode mulai tahun 2018 sampai dengan tahun 2024.
Citra perubahan dibuat menggunakan metode image differencing. Model perubahan
tutupan mangrove dibangun menggunakan kombinasi peubah citra hasil image
differencing dan peubah sosio-geo-biofisik. Penelitian ini menunjukkan bahwa
model terbaik dibangun menggunakan kombinasi peubah image differencing dan
sosio-geo-biofisik dengan penghalusan citra pasca klasifikasi menghasilkan overall
accuracy sebesar 95.1%, kappa accuracy sebesar 94.1%, minimum producer’s
accuracy sebesar 90.1%, dan minimum user’s accuracy sebesar 88.6%. Peubah
yang paling berpengaruh dalam pembangunan algoritma decision tree dalam
deteksi deforestasi mangrove adalah ?BSI untuk peubah spektral dan substrat untuk
peubah sosio-geo-biofisik. Penghalusan citra pasca klasifikasi mampu
menghilangkan noise dalam hasil klasifikasi. Deforestasi di Kabupaten Langkat
sebagian besar terjadi akibat alih fungsi mangrove menjadi tambak dan perkebunan. This research presents the development of a machine learning-based method for detecting mangrove cover change. The study was conducted on deforestation events that occurred in Langkat Regency, Indonesia, from 2018 to 2024. A change map was generated using the image differencing method. The mangrove cover change model was constructed using a combination of variables derived from the image differencing results and a set of socio-geo-biophysical parameters. This study demonstrates that the best model was constructed using a combination of image differencing and socio-geo-biophysical variables with post-classification image smoothing, resulting in an overall accuracy of 95.1%, a kappa accuracy of 94.1%, a minimum producer’s accuracy of 90.1%, and a minimum user’s accuracy of 88.6%. The most influential variables in the development of the decision tree algorithm were the change in the Bare Soil Index (?BSI) as a spectral variable and substrate type as a socio-geo-biophysical variable. Post-classification image smoothing effectively eliminated noise from the classification results. Deforestation in Langkat Regency was found to be predominantly driven by the conversion of mangrove areas into aquaculture ponds and plantations. |
| URI: | http://repository.ipb.ac.id/handle/123456789/166959 |
| Appears in Collections: | UT - Forest Management |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_E1401211062_5d17b3076e7143ccad3f366e70652896.pdf | Cover | 769.44 kB | Adobe PDF | View/Open |
| fulltext_E1401211062_a423926ddfc74eed89a1c36b5cbb5621.pdf Restricted Access | Fulltext | 3.79 MB | Adobe PDF | View/Open |
| lampiran_E1401211062_1ad22799e3524db9affafefc6ad74aca.pdf Restricted Access | Lampiran | 244.92 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.