Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/166884| Title: | Pengembangan Sistem Pemantauan Konsumsi Energi Listrik Menggunakan K-Nearest Neighbors (K-NN) dan Sensor PZEM-004T |
| Other Titles: | Development of an Electrical Energy Consumption Monitoring System Using K-Nearest Neighbors (K-NN) and PZEM-004T Sensor |
| Authors: | Hermadi, Irman MANURUNG, CINDY ARDITHA CLAUDIA |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Pengembangan sistem pemantauan konsumsi energi listrik menggunakan sensor PZEM-004T dengan algoritma K-Nearest Neighbors (K-NN) merupakan sebuah inovasi yang menggabungkan teknologi monitoring penggunaan listrik secara real-time dengan pemanfaatan jaringan internet sebagai media berbagi data serta metode Machine Learning (ML) untuk prediksi konsumsi kWh di masa yang akan mendatang. Sensor PZEM-004T digunakan untuk mengukur parameter listrik seperti tegangan, arus, daya, dan energi yang digunakan. Data yang diperoleh akan diolah dan dianalisis menggunakan algoritma K-NN yang berfungsi untuk membantu proses pengambilan keputusan, seperti mengidentifikasi pola konsumsi listrik. NodeMCU ESP8266 berperan sebagai penghubung utama antara sensor dan platform cloud yang memungkinkan data yang dikumpulkan dikirim ke Google Sheets untuk pemantauan jarak jauh berbasis smartphone. Hasilnya diharapkan mampu membantu efisiensi pemantauan konsumsi energi listrik dan memberikan solusi inovatif dalam pengelolaan energi berbasis Internet of Things (IoT). The development of an electrical energy consumption monitoring system using the PZEM-004T sensor with the K-Nearest Neighbors (K-NN) algorithm is an innovation that combines real-time electricity usage monitoring technology with the use of the internet as a medium for data sharing, as well as Machine Learning (ML) methods to predict future kWh consumption. The PZEM-004T sensor is used to measure electrical parameters such as voltage, current, power, and energy usage. The collected data will be processed and analyzed using the K-NN algorithm, which serves to support decision-making processes, such as identifying electricity consumption patterns. The NodeMCU ESP8266 acts as the main interface between the sensor and the cloud platform, enabling the collected data to be sent to Google Sheets for remote monitoring via smartphones. The system is expected to improve the efficiency of electricity consumption monitoring and provide an innovative solution for energy management based on the Internet of Things (IoT). |
| URI: | http://repository.ipb.ac.id/handle/123456789/166884 |
| Appears in Collections: | UT - Computer Engineering Tehcnology |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_J0304211026_887df007b3034d979048f9bf228400a7.pdf | Cover | 382.89 kB | Adobe PDF | View/Open |
| fulltext_J0304211026_950d70b5ca5148f2a315eb7dad336198.pdf Restricted Access | Fulltext | 1.4 MB | Adobe PDF | View/Open |
| lampiran_J0304211026_b408ee96bbe84d46a5ad6dd06ac66087.pdf Restricted Access | Lampiran | 295.11 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.