Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/166884
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHermadi, Irman-
dc.contributor.authorMANURUNG, CINDY ARDITHA CLAUDIA-
dc.date.accessioned2025-08-07T02:16:06Z-
dc.date.available2025-08-07T02:16:06Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/166884-
dc.description.abstractPengembangan sistem pemantauan konsumsi energi listrik menggunakan sensor PZEM-004T dengan algoritma K-Nearest Neighbors (K-NN) merupakan sebuah inovasi yang menggabungkan teknologi monitoring penggunaan listrik secara real-time dengan pemanfaatan jaringan internet sebagai media berbagi data serta metode Machine Learning (ML) untuk prediksi konsumsi kWh di masa yang akan mendatang. Sensor PZEM-004T digunakan untuk mengukur parameter listrik seperti tegangan, arus, daya, dan energi yang digunakan. Data yang diperoleh akan diolah dan dianalisis menggunakan algoritma K-NN yang berfungsi untuk membantu proses pengambilan keputusan, seperti mengidentifikasi pola konsumsi listrik. NodeMCU ESP8266 berperan sebagai penghubung utama antara sensor dan platform cloud yang memungkinkan data yang dikumpulkan dikirim ke Google Sheets untuk pemantauan jarak jauh berbasis smartphone. Hasilnya diharapkan mampu membantu efisiensi pemantauan konsumsi energi listrik dan memberikan solusi inovatif dalam pengelolaan energi berbasis Internet of Things (IoT).-
dc.description.abstractThe development of an electrical energy consumption monitoring system using the PZEM-004T sensor with the K-Nearest Neighbors (K-NN) algorithm is an innovation that combines real-time electricity usage monitoring technology with the use of the internet as a medium for data sharing, as well as Machine Learning (ML) methods to predict future kWh consumption. The PZEM-004T sensor is used to measure electrical parameters such as voltage, current, power, and energy usage. The collected data will be processed and analyzed using the K-NN algorithm, which serves to support decision-making processes, such as identifying electricity consumption patterns. The NodeMCU ESP8266 acts as the main interface between the sensor and the cloud platform, enabling the collected data to be sent to Google Sheets for remote monitoring via smartphones. The system is expected to improve the efficiency of electricity consumption monitoring and provide an innovative solution for energy management based on the Internet of Things (IoT).-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePengembangan Sistem Pemantauan Konsumsi Energi Listrik Menggunakan K-Nearest Neighbors (K-NN) dan Sensor PZEM-004Tid
dc.title.alternativeDevelopment of an Electrical Energy Consumption Monitoring System Using K-Nearest Neighbors (K-NN) and PZEM-004T Sensor-
dc.typeTugas Akhir-
dc.subject.keywordSensor integrationid
dc.subject.keywordIoT Systemid
dc.subject.keywordK-NN algorithmid
dc.subject.keywordGoogle Sheetid
Appears in Collections:UT - Computer Engineering Tehcnology

Files in This Item:
File Description SizeFormat 
cover_J0304211026_887df007b3034d979048f9bf228400a7.pdfCover382.89 kBAdobe PDFView/Open
fulltext_J0304211026_950d70b5ca5148f2a315eb7dad336198.pdf
  Restricted Access
Fulltext1.4 MBAdobe PDFView/Open
lampiran_J0304211026_b408ee96bbe84d46a5ad6dd06ac66087.pdf
  Restricted Access
Lampiran295.11 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.