Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/164801
Title: Pengaruh Laju Penularan dan Laju Pemulihan terhadap Penyebaran Penyakit Pertussis dengan Model SEIR
Other Titles: The Effect of Transmission Rate and Recovery Rate on the Spread of Pertussis Using the SEIR Model
Authors: Sianturi, Paian
Kusnanto, Ali
Kholik, Imam Nur
Issue Date: 2025
Publisher: IPB University
Abstract: Pertussis merupakan penyakit menular yang disebabkan oleh bakteri Bordetella pertussis dan dapat menyebabkan gangguan pernapasan serius, terutama pada bayi dan anak-anak. Karya ilmiah ini memodelkan penyebaran Pertussis menggunakan model SEIR yang membagi populasi ke dalam empat subpopulasi yaitu Susceptible, Exposed, Infected, Recovered. Tujuannya adalah menganalisis kestabilan titik tetap, menghitung bilangan reproduksi dasar (R0), serta mengamati pengaruh beberapa parameter melalui simulasi numerik. Kestabilan titik tetap bebas penyakit dan endemik dianalisis secara lokal dengan kriteria Routh-Hurwitz dan secara global melalui pendekatan fungsi Lyapunov. Titik tetap bebas penyakit stabil jika R0<1, sedangkan titik tetap endemik stabil saat R0>1. Simulasi dilakukan terhadap empat parameter, yaitu laju kelahiran/kematian, penularan, infeksi, dan pemulihan. Kombinasi variasi laju penularan dan pemulihan memberikan pengaruh paling besar terhadap R0, sehingga menjadi langkah paling efektif dalam pengendalian Pertussis menuju kondisi bebas penyakit.
Pertussis is a contagious disease caused by the Bordetella pertussis bacterium and can lead to serious respiratory problems, especially in infants and children. This scientific work models the spread of Pertussis using the SEIR model, which divides the population into four subpopulations, namely Susceptible, Exposed, Infected, and Recovered. The aim is to analyze the stability of equilibrium points, calculate the basic reproduction number (R0), and observe the influence of several parameters through numerical simulations. The stability of both the diseasefree and endemic equilibrium points is analyzed locally using the Routh-Hurwitz criterion and globally through the Lyapunov function approach. The disease-free equilibrium is stable when R0<1, while the endemic equilibrium is stable when R0>1 . Simulations are conducted on four parameters: birth/death rate, transmission rate, infection rate, and recovery rate. The combination of variations in transmission and recovery rates has the greatest impact on R0, making it the most effective strategy for controlling Pertussis toward a disease-free state.
URI: http://repository.ipb.ac.id/handle/123456789/164801
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G5401211037_b9e1e27cb5d0431e8f521b2bd0e812a7.pdfCover519.26 kBAdobe PDFView/Open
fulltext_G5401211037_1c5d884b814e49ba89daf622511f2217.pdf
  Restricted Access
Fulltext1.14 MBAdobe PDFView/Open
lampiran_G5401211037_1d775fde41ba435cac0de7d356a9953b.pdf
  Restricted Access
Lampiran1.41 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.