Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/164092
Title: Analisis Dinamika Sistem Persamaan Schrödinger dengan Variasi Medan Potensial
Other Titles: Dynamical System Analysis of the Schrödinger Equation with Varying Potential Fields
Authors: Alatas, Husin
Hardhienata, Hendradi
Hilalqi, Sulton
Issue Date: 2025
Publisher: IPB University
Abstract: Persamaan Schrödinger merupakan fondasi utama dalam mekanika kuantum. Dengan membuat suatu set persamaan dinamika sistem dari persamaan Schrödinger 1D tak bergantung waktu, dapat dianalisis kestabilannya melalui pencarian titik kritis, karakteristik nilai eigen, dan bifurkasi yang muncul akibat variasi parameter energi. Dinamika fungsi gelombang dalam berbagai bentuk potensial, baik yang memiliki bentuk fungsi eksplisit (seperti sinh, cosh, dan lainnya) maupun yang bersifat dinamis tanpa bentuk eksplisit, dianalisis menggunakan simulasi numerik di MATLAB. Hasil simulasi numerik menunjukkan bahwa nilai energi tertentu menghasilkan fungsi gelombang yang mengalami peluruhan atau pertumbuhan, serta menunjukkan fenomena osilasi. Selain itu, pendekatan ini berhasil memprediksi kuantisasi tingkat energi dan menunjukkan jenis bifurkasi non-klasik yaitu bifurkasi sadel-center. Studi ini memperlihatkan bahwa pendekatan dinamika sistem dapat menjadi alternatif dalam memahami perilaku sistem kuantum pada medan potensial kompleks yang sulit diselesaikan secara analitik.
The Schrödinger equation is a fundamental cornerstone in quantum mechanics. By formulating a set of dynamical system equations from the one-dimensional time-independent Schrödinger equation, its stability can be analyzed through the identification of critical points, eigenvalue characteristics, and bifurcations arising from variations in the energy parameter. The dynamics of the wave function under various potential forms—both with explicit functional expressions (such as sinh, cosh, and others) and dynamic potentials without explicit forms—are analyzed using numerical simulations in MATLAB. The numerical simulation results show that certain energy values lead to wave functions that decay or grow, as well as exhibit oscillatory behavior. Furthermore, this approach successfully predicts energy level quantization and reveals non-classical bifurcation transitions, specifically saddle-center bifurcations. This study demonstrates that the dynamical systems approach can serve as an alternative for understanding the behavior of quantum systems in complex potential fields that are difficult to solve analytically.
URI: http://repository.ipb.ac.id/handle/123456789/164092
Appears in Collections:UT - Physics

Files in This Item:
File Description SizeFormat 
cover_G7401211008_88b52fc2e4f94b70a856253e22f1475c.pdfCover1.98 MBAdobe PDFView/Open
fulltext_G7401211008_1c9f4996148f417dbd6762fefc4a0eb3.pdf
  Restricted Access
Fulltext1.12 MBAdobe PDFView/Open
lampiran_G7401211008_da4594ec84e4458fa7290b35bf744fd4.pdf
  Restricted Access
Lampiran3.86 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.