Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/162617
Title: Identifikasi Varietas Jagung Menggunakan Metode Convolutional Neural Network
Other Titles: Identification of Corn Varieties Using the Convolutional Neural Network Method
Authors: Kustiyo, Aziz
Idin, Abdurrahim Ramadhan
Issue Date: 2025
Publisher: IPB University
Abstract: Jagung merupakan salah satu komoditas utama di Indonesia, namun produktivitasnya sangat dipengaruhi oleh kondisi lingkungan dan cuaca. Fluktuasi hasil panen jagung sering terjadi akibat perubahan iklim, seperti fenomena El Niño yang memicu kekeringan dan keterlambatan musim tanam. Oleh karena itu, pemilihan benih unggul yang tahan terhadap cekaman kekeringan menjadi sangat penting, terutama di daerah dengan kondisi lahan kering seperti Nusa Tenggara Timur. Metode identifikasi benih yang masih menggunakan pendekatan tradisional, seperti pengukuran morfologi secara manual, dianggap kurang efisien baik dari segi waktu maupun tenaga. Penelitian ini mengembangkan model klasifikasi varietas jagung menggunakan Convolutional Neural Network (CNN) dengan objek penelitian lima varietas yaitu NK-212, NK-7328, P-21, Pertiwi-2, dan Pertiwi-6. Tiga arsitektur CNN dengan tingkat kompleksitas berbeda dirancang dan diuji. Hasilnya, model terbaik yang terdiri dari tiga lapisan konvolusi dan dua lapisan dense dengan dropout menunjukkan performa optimal, mencapai akurasi 89,20% pada data pengujian.
Corn is one of the main commodities in Indonesia, but its productivity is greatly influenced by environmental and weather conditions. Fluctuations in corn harvests often occur due to climate change, such as the El Niño phenomenon which triggers drought and delays in the planting season. Therefore, the selection of superior seeds that are resistant to drought stress is very important, especially in areas with dry land conditions such as East Nusa Tenggara. Seed identification methods that still use traditional approaches, such as manual morphological measurements, are considered less efficient in terms of time and energy. This study developed a corn variety classification model using Convolutional Neural Network (CNN) with five varieties as research objects, namely NK-212, NK-7328, P-21, Pertiwi-2, and Pertiwi-6. Three CNN architectures with different levels of complexity were designed and tested. As a result, the best model consisting of three convolutional layers and two dense layers with dropout showed optimal performance, achieving an accuracy of 89.20% on the test data.
URI: http://repository.ipb.ac.id/handle/123456789/162617
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
cover_G6401211114_bcbd318549f946a0937287d222ff3a9f.pdfCover884.9 kBAdobe PDFView/Open
fulltext_G6401211114_720820c82f3b4cfd8dd0a693f71c45c8.pdf
  Restricted Access
Fulltext1.63 MBAdobe PDFView/Open
lampiran_G6401211114_2cee999bd7594d2a8103416d7379f7f6.pdf
  Restricted Access
Lampiran1.89 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.