View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - School of Data Science, Mathematic and Informatics
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Identifikasi Varietas Jagung Menggunakan Metode Convolutional Neural Network

      Thumbnail
      View/Open
      Cover (884.9Kb)
      Fulltext (1.596Mb)
      Lampiran (1.849Mb)
      Date
      2025
      Author
      Idin, Abdurrahim Ramadhan
      Kustiyo, Aziz
      Metadata
      Show full item record
      Abstract
      Jagung merupakan salah satu komoditas utama di Indonesia, namun produktivitasnya sangat dipengaruhi oleh kondisi lingkungan dan cuaca. Fluktuasi hasil panen jagung sering terjadi akibat perubahan iklim, seperti fenomena El Niño yang memicu kekeringan dan keterlambatan musim tanam. Oleh karena itu, pemilihan benih unggul yang tahan terhadap cekaman kekeringan menjadi sangat penting, terutama di daerah dengan kondisi lahan kering seperti Nusa Tenggara Timur. Metode identifikasi benih yang masih menggunakan pendekatan tradisional, seperti pengukuran morfologi secara manual, dianggap kurang efisien baik dari segi waktu maupun tenaga. Penelitian ini mengembangkan model klasifikasi varietas jagung menggunakan Convolutional Neural Network (CNN) dengan objek penelitian lima varietas yaitu NK-212, NK-7328, P-21, Pertiwi-2, dan Pertiwi-6. Tiga arsitektur CNN dengan tingkat kompleksitas berbeda dirancang dan diuji. Hasilnya, model terbaik yang terdiri dari tiga lapisan konvolusi dan dua lapisan dense dengan dropout menunjukkan performa optimal, mencapai akurasi 89,20% pada data pengujian.
       
      Corn is one of the main commodities in Indonesia, but its productivity is greatly influenced by environmental and weather conditions. Fluctuations in corn harvests often occur due to climate change, such as the El Niño phenomenon which triggers drought and delays in the planting season. Therefore, the selection of superior seeds that are resistant to drought stress is very important, especially in areas with dry land conditions such as East Nusa Tenggara. Seed identification methods that still use traditional approaches, such as manual morphological measurements, are considered less efficient in terms of time and energy. This study developed a corn variety classification model using Convolutional Neural Network (CNN) with five varieties as research objects, namely NK-212, NK-7328, P-21, Pertiwi-2, and Pertiwi-6. Three CNN architectures with different levels of complexity were designed and tested. As a result, the best model consisting of three convolutional layers and two dense layers with dropout showed optimal performance, achieving an accuracy of 89.20% on the test data.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/162617
      Collections
      • UT - Computer Science [92]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository