Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/162560
Title: Analisis Penentuan Tingkat Kematangan Buah Mengkudu Menggunakan Metode KNN dan SVM
Other Titles: 
Authors: Wijaya, Sony Hartono
Haryanto, Toto
Hehanussa, Siti Gayatri
Issue Date: 2025
Publisher: IPB University
Abstract: Buah mengkudu (Morinda citrifolia) merupakan salah satu komoditas ekspor buah-buahan di Indonesia yang selalu tersedia di setiap musim dan dikenal memiliki berbagai manfaat kesehatan. Buah mengkudu berasal dari wilayah Asia Tenggara, termasuk Indonesia, dan sering digunakan dalam pengobatan tradisional. Pada umumnya masyarakat menentukan kematangan buah mengkudu secara manual, yaitu dengan menggunakan penampakan visual. Hal ini menyebabkan adanya perbedaan persepsi dalam menentukan tingkat kematangan buah mengkudu. Oleh karena itu, penelitian ini bertujuan membangun model machine learning untuk klasifikasi tingkat kematangan buah mengkudu. Metode klasifikasi yang digunakan adalah K-Nearest Neighbor (KNN) dan Support Vector Machine (SVM) dengan menggunakan ekstraksi fitur warna Hue Saturation Intensity (HSI) dan ekstraksi fitur tekstur Local Binary Pattern (LBP). Pengklasifikasian yang dilakukan pada buah mengkudu dengan algoritma KNN menghasilkan model klasifikasi yang lebih baik daripada menggunakan algoritma SVM. Akurasi terbaik yang dihasilkan oleh KNN sebesar 88.62% pada k=11, sedangkan akurasi terbaik SVM dengan kernel polynomial sebesar 87.80%, menggunakan parameter C=0.1 Gamma=1, Degree=5, dan coef0=1.0. Hasil ini didapatkan dari data latih dan data uji dengan perbandingan 80:20.
Noni fruit (Morinda citrifolia) is one of Indonesia’s export commodities. It is available year-round and is well known for its numerous health benefits. Native to Southeast Asia, including Indonesia, noni fruit is widely used in traditional medicine. Typically, the ripeness of noni fruit is determined manually based on visual inspection, which can lead to subjective judgments and inconsistent results. Therefore, this study aims to develop a machine-learning model to classify the ripeness levels of noni fruit. The classification methods employed are K Nearest Neighbor (KNN) and Support Vector Machine (SVM), utilizing Hue-Saturation-Intensity (HSI) color features and Local Binary Pattern (LBP) texture features. Experimental results show that the KNN algorithm outperforms the SVM algorithm in terms of classification accuracy. The highest accuracy achieved using KNN was 88.62% at k = 11, whereas the best accuracy obtained with SVM using a polynomial kernel was 87.80%, with parameters set to C = 0.1, Gamma = 1, Degree = 5, and coef0 = 1.0. These results were achieved using an 80:20 split ratio for training and testing data.
URI: http://repository.ipb.ac.id/handle/123456789/162560
Appears in Collections:MT - School of Data Science, Mathematic and Informatics

Files in This Item:
File Description SizeFormat 
cover_G6501222046_0a44bbcccb2c4911bdec78284fa0729f.pdfCover1.66 MBAdobe PDFView/Open
fulltext_G6501222046_f16fab02b67f48a78d18738b3c004cea.pdf
  Restricted Access
Fulltext2.56 MBAdobe PDFView/Open
lampiran_G6501222046_ebd63778d4894eeabbc1e89c6cb253ad.pdf
  Restricted Access
Lampiran560.81 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.