Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/161682| Title: | Penghitungan Total Kerugian Asuransi Kesehatan dengan Policy Limit dan Coinsurance Menggunakan Simulasi Monte Carlo |
| Other Titles: | Estimating Aggregate Loss in Health Insurance with Policy Limit and Coinsurance via Monte Carlo Simulation |
| Authors: | Setiawaty, Berlian Wibowo, Lita Yulika |
| Issue Date: | 2025 |
| Publisher: | IPB University |
| Abstract: | Asuransi kesehatan merupakan mekanisme penting dalam mengelola risiko finansial akibat kejadian tak terduga bagi individu. Agar perlindungan tetap berkelanjutan tanpa merugikan perusahaan, polis harus dirancang secara cermat. Salah satu strategi yang diterapkan adalah policy adjustments seperti policy limit dan coinsurance. Penelitian ini bertujuan mengidentifikasi sebaran banyak dan besar klaim berdasarkan data asuransi kesehatan tahun 2022 menggunakan metode Maximum Likelihood Estimation untuk menduga parameter. Sebaran tersebut digunakan untuk membentuk sebaran gabungan dalam perhitungan total kerugian melalui simulasi Monte Carlo, serta menganalisis pengaruh policy adjustments terhadap total kerugian berdasarkan Loss Elimination Ratio (LER), yaitu rasio yang menggambarkan proporsi kerugian yang dieliminasi oleh perusahaan akibat kebijakan tersebut. Hasil menunjukkan bahwa banyak klaim mengikuti sebaran zero-truncated binomial negatif dan besar klaim mengikuti sebaran Pareto tipe II. Simulasi memperlihatkan bahwa peningkatan policy limit dan coinsurance menurunkan nilai LER, dengan pola hampir linear pada coinsurance. Kombinasi keduanya memberikan penurunan kerugian paling besar, tercermin dari LER tertinggi. Namun, pendekatan ini justru dapat mengurangi daya tarik produk asuransi bagi pemegang polis karena meningkatkan porsi kerugian yang harus mereka tanggung. Health insurance is a key mechanism for managing individuals' financial risk from unexpected health events. To ensure sustainable protection without disadvantaging insurers, policy design must be carefully planned. One common strategy is applying policy adjustments such as policy limits and coinsurance. This study aims to identify suitable distributions for claim frequency and severity using 2022 health insurance data, with parameter estimation done via Maximum Likelihood Estimation. The resulting distributions are combined to simulate total loss using the Monte Carlo method, and to analyze the impact of policy adjustments through the Loss Elimination Ratio (LER)—a measure of the proportion of loss eliminated due to policy provisions. Results show that claim frequency follows a zero-truncated negative binomial distribution, and severity follows a Type II Pareto distribution. Simulations reveal that increasing policy limit and coinsurance both reduce LER, with coinsurance showing an almost linear decrease. The combination of both adjustments yields the highest LER, indicating the most significant loss reduction for insurers. However, this approach may lower product appeal for policyholders due to the increased share of loss they must bear. |
| URI: | http://repository.ipb.ac.id/handle/123456789/161682 |
| Appears in Collections: | UT - Actuaria |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5402211006_3200c8b9d2d64daea48b0b014e805a07.pdf | Cover | 636.1 kB | Adobe PDF | View/Open |
| fulltext_G5402211006_24d49610b18b49448481c3a8157aa376.pdf Restricted Access | Fulltext | 1.87 MB | Adobe PDF | View/Open |
| lampiran_G5402211006_af55a4df39f74561afe4e4f75dd31bcd.pdf Restricted Access | Lampiran | 291.79 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.