Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/161682
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSetiawaty, Berlian
dc.contributor.authorWibowo, Lita Yulika
dc.date.accessioned2025-05-14T05:28:28Z
dc.date.available2025-05-14T05:28:28Z
dc.date.issued2025
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/161682
dc.description.abstractAsuransi kesehatan merupakan mekanisme penting dalam mengelola risiko finansial akibat kejadian tak terduga bagi individu. Agar perlindungan tetap berkelanjutan tanpa merugikan perusahaan, polis harus dirancang secara cermat. Salah satu strategi yang diterapkan adalah policy adjustments seperti policy limit dan coinsurance. Penelitian ini bertujuan mengidentifikasi sebaran banyak dan besar klaim berdasarkan data asuransi kesehatan tahun 2022 menggunakan metode Maximum Likelihood Estimation untuk menduga parameter. Sebaran tersebut digunakan untuk membentuk sebaran gabungan dalam perhitungan total kerugian melalui simulasi Monte Carlo, serta menganalisis pengaruh policy adjustments terhadap total kerugian berdasarkan Loss Elimination Ratio (LER), yaitu rasio yang menggambarkan proporsi kerugian yang dieliminasi oleh perusahaan akibat kebijakan tersebut. Hasil menunjukkan bahwa banyak klaim mengikuti sebaran zero-truncated binomial negatif dan besar klaim mengikuti sebaran Pareto tipe II. Simulasi memperlihatkan bahwa peningkatan policy limit dan coinsurance menurunkan nilai LER, dengan pola hampir linear pada coinsurance. Kombinasi keduanya memberikan penurunan kerugian paling besar, tercermin dari LER tertinggi. Namun, pendekatan ini justru dapat mengurangi daya tarik produk asuransi bagi pemegang polis karena meningkatkan porsi kerugian yang harus mereka tanggung.
dc.description.abstractHealth insurance is a key mechanism for managing individuals' financial risk from unexpected health events. To ensure sustainable protection without disadvantaging insurers, policy design must be carefully planned. One common strategy is applying policy adjustments such as policy limits and coinsurance. This study aims to identify suitable distributions for claim frequency and severity using 2022 health insurance data, with parameter estimation done via Maximum Likelihood Estimation. The resulting distributions are combined to simulate total loss using the Monte Carlo method, and to analyze the impact of policy adjustments through the Loss Elimination Ratio (LER)—a measure of the proportion of loss eliminated due to policy provisions. Results show that claim frequency follows a zero-truncated negative binomial distribution, and severity follows a Type II Pareto distribution. Simulations reveal that increasing policy limit and coinsurance both reduce LER, with coinsurance showing an almost linear decrease. The combination of both adjustments yields the highest LER, indicating the most significant loss reduction for insurers. However, this approach may lower product appeal for policyholders due to the increased share of loss they must bear.
dc.description.sponsorship
dc.language.isoid
dc.publisherIPB Universityid
dc.titlePenghitungan Total Kerugian Asuransi Kesehatan dengan Policy Limit dan Coinsurance Menggunakan Simulasi Monte Carloid
dc.title.alternativeEstimating Aggregate Loss in Health Insurance with Policy Limit and Coinsurance via Monte Carlo Simulation
dc.typeSkripsi
dc.subject.keywordMonte carlo simulationid
dc.subject.keywordaggregate lossid
dc.subject.keywordcoinsuranceid
dc.subject.keywordloss elimination ratioid
dc.subject.keywordpolicy limitid
Appears in Collections:UT - Actuaria

Files in This Item:
File Description SizeFormat 
cover_G5402211006_3200c8b9d2d64daea48b0b014e805a07.pdfCover636.1 kBAdobe PDFView/Open
fulltext_G5402211006_24d49610b18b49448481c3a8157aa376.pdf
  Restricted Access
Fulltext1.87 MBAdobe PDFView/Open
lampiran_G5402211006_af55a4df39f74561afe4e4f75dd31bcd.pdf
  Restricted Access
Lampiran291.79 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.