Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/160629
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSianturi, Paian-
dc.contributor.advisorKusnanto, Ali-
dc.contributor.authorFirdaus, Alfath Fathan-
dc.date.accessioned2025-01-09T23:48:09Z-
dc.date.available2025-01-09T23:48:09Z-
dc.date.issued2025-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/160629-
dc.description.abstractPenelitian ini menggunakan model matematika SEIR (Susceptible-Exposed Infected-Recovered) untuk menganalisis dinamika penyebaran Covid-19. Penelitian ini mencakup penentuan titik tetap bebas penyakit dan endemik, analisis kestabilan menggunakan kriteria Routh-Hurwitz, serta perhitungan bilangan reproduksi dasar (R0) melalui metode matriks next generation. Simulasi numerik digunakan untuk melihat bagaimana variabel seperti laju transmisi, vaksinasi, dan laju pemulihan memengaruhi dinamika penyebaran penyakit. Hasil analisis menunjukkan bahwa R0 < 1 menunjukkan bahwa penyakit akan hilang, sedangkan R0 >1 menunjukkan bahwa kondisi menjadi endemik. Simulasi menunjukkan bahwa pengurangan kontak, peningkatan laju vaksinasi, dan peningkatan pengobatan secara signifikan dapat mengurangi nilai R0, mengurangi jumlah kasus infeksi, dan mempercepat waktu pengendalian wabah-
dc.description.abstractThis study uses the SEIR (Susceptible-Exposed-Infected-Recovered) mathematical model to analyze the dynamics of the spread of Covid-19. The study includes the determination of disease-free and endemic fixed points, stability analysis using the Routh-Hurwitz criterion, and calculation of the basic reproduction number (R0) through the next generation matrix method. Numerical simulations are used to see how variables such as transmission rate, vaccination, and recovery rate affect the dynamics of disease spread. The analysis shows that R0 <1 indicates that the disease will disappear, while R0 > 1 indicates that the condition becomes endemic. Simulations show that reducing contacts, increasing the vaccination rate, and increasing treatment can significantly reduce the R0 value, reduce the number of infectious cases, and speed up the outbreak control time.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titleAnalisis Kestabilan Model Matematika SEIR pada Penyakit Covid-19id
dc.title.alternativeStability Analysis of SEIR Mathematical Model on Covid-19 Disease-
dc.typeSkripsi-
dc.subject.keywordbasic reproduction numberid
dc.subject.keywordcovid-19id
dc.subject.keywordnumerical simulationid
dc.subject.keywordSEIRid
dc.subject.keywordstability analysisid
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
cover_G5401201068_36f15b25354743fc924469138352e111.pdfCover482.42 kBAdobe PDFView/Open
fulltext_G5401201068_adc00d0881c2412495a2773aa405020c.pdf
  Restricted Access
Fulltext1.41 MBAdobe PDFView/Open
lampiran_G5401201068_4aef6dfafdce4af0824e7681e80cc16b.pdf
  Restricted Access
Lampiran633.63 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.