Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/159154| Title: | Prediksi Dinamika Harga Indeks Saham Menggunakan SVM (Support Vector Machine) Dengan Pendekatan Time Series Moving Avarage. |
| Other Titles: | |
| Authors: | Hardhienata, Hendradi Puspita, R. Tony Ibnu Sumaryada Wijaya Gladion, Difa Leroy |
| Issue Date: | 2024 |
| Publisher: | IPB University |
| Abstract: | Penelitian ini mengevaluasi prediksi harga indeks saham, khususnya Indeks
Harga Saham Gabungan (IHSG) dan LQ45, menggunakan Support Vector
Machine (SVM) dengan variasi moving average: Simple Moving Average (SMA),
Exponential Moving Average (EMA), Weighted Moving Average (WMA), dan
teknik shifting. Indeks saham mencerminkan pergerakan harga yang dipengaruhi
oleh faktor ekonomi, kebijakan, dan kondisi global. Hasil menunjukkan bahwa
pada prediksi IHSG, model SVM-EMA memiliki akurasi tertinggi sebesar
98.08% dan MAPE terendah sebesar 2.85%, menunjukkan kemampuan dalam
menangkap perubahan harga dengan baik. Pada prediksi LQ45, model SVM WMA mencatat akurasi tertinggi sebesar 96.01%, sedangkan teknik shifting
menunjukkan akurasi terendah untuk IHSG (75.13%) dan LQ45 (85.87%), dengan
MAPE masing-masing sebesar 3.01% dan 3.87%. Hasil ini menegaskan
keunggulan moving average dalam memprediksi harga saham dan pemodelan. This research evaluates the prediction of stock index prices, specifically the Jakarta Composite Index (IHSG) and LQ45, using Support Vector Machine (SVM) with variations of moving averages: Simple Moving Average (SMA), Exponential Moving Average (EMA), Weighted Moving Average (WMA), and the shifting technique. Stock indices reflect price movements influenced by economic factors, government policies, and global conditions. The results show that for IHSG predictions, the SVM-EMA model achieved the highest accuracy of 98.08% and the lowest MAPE of 2.85%, demonstrating its ability to capture recent price changes effectively. In LQ45 predictions, the SVM-WMA model recorded the highest accuracy of 96.01%, while the shifting technique showed the lowest accuracy for both IHSG (75.13%) and LQ45 (85.87%), with MAPE values of 3.01% and 3.87%, respectively. These findings highlight the superiority of the moving average approach in stock price prediction and modeling. |
| URI: | http://repository.ipb.ac.id/handle/123456789/159154 |
| Appears in Collections: | UT - Physics |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G74190080_43fb078beec2424992d4bab71f39fa1f.pdf | Cover | 418.27 kB | Adobe PDF | View/Open |
| fulltext_G74190080_09a9a4347726435a8e124d481665d4c4.pdf Restricted Access | Fulltext | 917.18 kB | Adobe PDF | View/Open |
| lampiran_G74190080_b5a41a71c96e4809b172f37fd8eb9324.pdf Restricted Access | Lampiran | 472.1 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.