Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/159154
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHardhienata, Hendradi-
dc.contributor.advisorPuspita, R. Tony Ibnu Sumaryada Wijaya-
dc.contributor.authorGladion, Difa Leroy-
dc.date.accessioned2024-10-28T12:48:34Z-
dc.date.available2024-10-28T12:48:34Z-
dc.date.issued2024-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/159154-
dc.description.abstractPenelitian ini mengevaluasi prediksi harga indeks saham, khususnya Indeks Harga Saham Gabungan (IHSG) dan LQ45, menggunakan Support Vector Machine (SVM) dengan variasi moving average: Simple Moving Average (SMA), Exponential Moving Average (EMA), Weighted Moving Average (WMA), dan teknik shifting. Indeks saham mencerminkan pergerakan harga yang dipengaruhi oleh faktor ekonomi, kebijakan, dan kondisi global. Hasil menunjukkan bahwa pada prediksi IHSG, model SVM-EMA memiliki akurasi tertinggi sebesar 98.08% dan MAPE terendah sebesar 2.85%, menunjukkan kemampuan dalam menangkap perubahan harga dengan baik. Pada prediksi LQ45, model SVM WMA mencatat akurasi tertinggi sebesar 96.01%, sedangkan teknik shifting menunjukkan akurasi terendah untuk IHSG (75.13%) dan LQ45 (85.87%), dengan MAPE masing-masing sebesar 3.01% dan 3.87%. Hasil ini menegaskan keunggulan moving average dalam memprediksi harga saham dan pemodelan.-
dc.description.abstractThis research evaluates the prediction of stock index prices, specifically the Jakarta Composite Index (IHSG) and LQ45, using Support Vector Machine (SVM) with variations of moving averages: Simple Moving Average (SMA), Exponential Moving Average (EMA), Weighted Moving Average (WMA), and the shifting technique. Stock indices reflect price movements influenced by economic factors, government policies, and global conditions. The results show that for IHSG predictions, the SVM-EMA model achieved the highest accuracy of 98.08% and the lowest MAPE of 2.85%, demonstrating its ability to capture recent price changes effectively. In LQ45 predictions, the SVM-WMA model recorded the highest accuracy of 96.01%, while the shifting technique showed the lowest accuracy for both IHSG (75.13%) and LQ45 (85.87%), with MAPE values of 3.01% and 3.87%, respectively. These findings highlight the superiority of the moving average approach in stock price prediction and modeling.-
dc.description.sponsorshipnull-
dc.language.isoid-
dc.publisherIPB Universityid
dc.titlePrediksi Dinamika Harga Indeks Saham Menggunakan SVM (Support Vector Machine) Dengan Pendekatan Time Series Moving Avarage.id
dc.title.alternativenull-
dc.typeSkripsi-
dc.subject.keywordIHSGid
dc.subject.keywordSupport Vector Machines (SVM)id
dc.subject.keywordEMAid
dc.subject.keywordLq45id
dc.subject.keywordMoving Avarageid
Appears in Collections:UT - Physics

Files in This Item:
File Description SizeFormat 
cover_G74190080_43fb078beec2424992d4bab71f39fa1f.pdfCover418.27 kBAdobe PDFView/Open
fulltext_G74190080_09a9a4347726435a8e124d481665d4c4.pdf
  Restricted Access
Fulltext917.18 kBAdobe PDFView/Open
lampiran_G74190080_b5a41a71c96e4809b172f37fd8eb9324.pdf
  Restricted Access
Lampiran472.1 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.