Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/159098| Title: | Pengaruh Interaksi Populasi Patogen terhadap Kestabilan Model Matematika Penyebaran Penyakit Campak |
| Other Titles: | |
| Authors: | Jaharuddin Kusnanto, Ali Febriyanti, Fatika Rahma |
| Issue Date: | 2024 |
| Publisher: | IPB University |
| Abstract: | Penyakit campak merupakan penyakit yang disebabkan oleh morbillivirus dan sangat menular. Tingkat penyebaran penyakit campak dari satu individu ke individu lain sangat tinggi, yaitu lebih dari 90%. Penyakit campak dapat menyebar dengan cepat melalui udara, terutama melalui percikan air liur saat orang yang terinfeksi batuk atau bersin. Penelitian ini bertujuan untuk merekonstruksi model matematika pada penyebaran penyakit campak, menganalisis kestabilan titik tetap, melakukan analisis sensitivitas, dan melakukan simulasi numerik. Analisis kestabilan pada titik tetap bebas penyakit menunjukkan bahwa kestabilan lokal terjadi jika bilangan reproduksi dasar kurang dari 1. Sementara itu, pada titik tetap endemik, kestabilan lokal terjadi jika bilangan reproduksi dasar lebih besar dari 1. Hasil simulasi numerik menunjukkan bahwa untuk menekan penyebaran penyakit campak, dapat dilakukan dengan peningkatan laju vaksinasi individu rentan atau mengurangi individu yang terinfeksi. Measles is a disease caused by a morbillivirus and is highly contagious. The transmission rate of measles from one individual to another is very high, at more than 90%. Measles can spread rapidly through the air, especially through respiratory droplets when an infected person coughs or sneezes. This study aims to reconstruct a mathematical model for the spread of measles, analyze the stability of equilibrium points, conduct sensitivity analysis, and perform numerical simulations. The stability analysis of the disease-free equilibrium point shows that local stability occurs when the basic reproduction number is less than 1. Meanwhile, at the endemic equilibrium point, local stability occurs if the basic reproduction number is greater than 1. Numerical simulations were conducted to illustrate population dynamics under the various parameter changes. The results of numerical simulations indicate that controlling the spread of measles can be achieved by increasing the vaccination rate among vulnerable individuals or reducing the number of infected individuals. |
| URI: | http://repository.ipb.ac.id/handle/123456789/159098 |
| Appears in Collections: | UT - Mathematics |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| cover_G5401201064_1908e3cd827549a2be4eae38aac1caaa.pdf | Cover | 577.15 kB | Adobe PDF | View/Open |
| fulltext_G5401201064_6ec642bcb45e4662ad6e94d0f2e2dd44.pdf Restricted Access | Fulltext | 6.62 MB | Adobe PDF | View/Open |
| lampiran_G5401201064_465060c8740542c59368d555f34a1ecc.pdf Restricted Access | Lampiran | 4.34 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.