Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/132738| Title: | Pendugaan Produktivitas Padi Menggunakan Citra Satelit Sentinel-2 dengan Pendekatan Machine Learning Berbasis Indeks Vegetasi |
| Other Titles: | Estimating Rice Productivity Using Sentinel-2 Satellite Imagery with a Machine Learning Approach Based on Vegetation Index |
| Authors: | Seminar, Kudang Boro Supriyanto, Supriyanto Adyatma, Naufal Dian |
| Issue Date: | 2023 |
| Publisher: | IPB University |
| Abstract: | Informasi ketersediaan beras di masa mendatang mendukung kebijakan
pemerintah guna mewujudkan ketahanan pangan yang berkelanjutan. Salah satu
metode yang digunakan untuk mendukung ketersediaan beras di masa mendatang
yaitu penggunaan teknologi penginderaan jauh. Penelitian ini bertujuan untuk
menduga produktivitas padi berdasarkan nilai normalized difference vegetation
index (NDVI) citra satelit Sentinel-2 melalui pendekatan machine learning decision
tree. Data produksi padi, varietas, tanggal tanam, tanggal panen, dan koordinat
sawah didapat dengan melakukan wawancara kepada petani serta survei lapang.
Koordinat sawah kemudian dikonversi menjadi luas area dan dibuat produktivitas
padi per petakan sawah berdasarkan data yang sudah didapat. Nilai NDVI per
petakan sawah selama satu musim tanam kemudian dihubungkan dengan
produktivitas padi melalui machine learning decision tree. Model terbaik pada
pendugaan gabungan varietas Inpari 32 dan MR 219 memiliki nilai MAPE 5,077%
dengan akurasi 94,923%; RMSE ± 0,391 ton/ha; dan nilai R2 0,776. Model
pendugaan terbaik pada varietas Inpari 32 memiliki nilai MAPE 4,16% dengan
akurasi 95,84%; RMSE ± 0,262 ton/ha; dan R2 0,894. Model pendugaan terbaik
pada varietas MR 219 pada varietas MR 219 memiliki nilai MAPE 1,339% dengan
akurasi 98,661%; RMSE sebesar ± 0,103 ton/ha; dan R2 0,982. Information on future rice availability supports government policies for sustainable food security. One method used to support rice availability in the future is the use of remote sensing technology. This study aims to predict the productivity of rice based on normalized difference vegetation index (NDVI) of the Sentinel-2 satellite image through a machine learning decision tree approach. Rice production, plants variety, planting date, harvest date, and field coordinates were obtained by conducting interviews with farmers as well as field surveys. Paddy field coordinates then converted into area, and productivity per square area is generated based on the obtained data. The NDVI value per pitch for a single growing season is linked to the productivity of paddy through the machine learning decision tree. The best model on the combined varieties of Inpari 32 and MR 219 has a MAPE value of 5,077% with an accuracy 94,923%; RMSE ± 0,391 tons/ha; and R² 0,776. The best model on Inpari 32 varieties has a MAPE value of 4,16% with an accuracy 95,84%; RMSE ± 0,262 tons/ha; and R2 0,894. The best model on MR 219 varieties has a MAPE value of 1,339% with an accuracy 98,661%; RMSE ± 0,103 tons/ha; and R2 0,982. |
| URI: | http://repository.ipb.ac.id/handle/123456789/132738 |
| Appears in Collections: | UT - Agricultural and Biosystem Engineering |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Cover, Lembar Pengesahan, Prakata, Daftar isi.pdf Restricted Access | Cover | 932.53 kB | Adobe PDF | View/Open |
| F14190097_Naufal Dian Adyatma.pdf Restricted Access | Fullteks | 3.94 MB | Adobe PDF | View/Open |
| Lampiran.pdf Restricted Access | Lampiran | 2.37 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.