View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Pendugaan Produktivitas Padi Menggunakan Citra Satelit Sentinel-2 dengan Pendekatan Machine Learning Berbasis Indeks Vegetasi

      Thumbnail
      View/Open
      Cover (932.5Kb)
      Fullteks (3.850Mb)
      Lampiran (2.312Mb)
      Date
      2023
      Author
      Adyatma, Naufal Dian
      Seminar, Kudang Boro
      Supriyanto, Supriyanto
      Metadata
      Show full item record
      Abstract
      Informasi ketersediaan beras di masa mendatang mendukung kebijakan pemerintah guna mewujudkan ketahanan pangan yang berkelanjutan. Salah satu metode yang digunakan untuk mendukung ketersediaan beras di masa mendatang yaitu penggunaan teknologi penginderaan jauh. Penelitian ini bertujuan untuk menduga produktivitas padi berdasarkan nilai normalized difference vegetation index (NDVI) citra satelit Sentinel-2 melalui pendekatan machine learning decision tree. Data produksi padi, varietas, tanggal tanam, tanggal panen, dan koordinat sawah didapat dengan melakukan wawancara kepada petani serta survei lapang. Koordinat sawah kemudian dikonversi menjadi luas area dan dibuat produktivitas padi per petakan sawah berdasarkan data yang sudah didapat. Nilai NDVI per petakan sawah selama satu musim tanam kemudian dihubungkan dengan produktivitas padi melalui machine learning decision tree. Model terbaik pada pendugaan gabungan varietas Inpari 32 dan MR 219 memiliki nilai MAPE 5,077% dengan akurasi 94,923%; RMSE ± 0,391 ton/ha; dan nilai R2 0,776. Model pendugaan terbaik pada varietas Inpari 32 memiliki nilai MAPE 4,16% dengan akurasi 95,84%; RMSE ± 0,262 ton/ha; dan R2 0,894. Model pendugaan terbaik pada varietas MR 219 pada varietas MR 219 memiliki nilai MAPE 1,339% dengan akurasi 98,661%; RMSE sebesar ± 0,103 ton/ha; dan R2 0,982.
       
      Information on future rice availability supports government policies for sustainable food security. One method used to support rice availability in the future is the use of remote sensing technology. This study aims to predict the productivity of rice based on normalized difference vegetation index (NDVI) of the Sentinel-2 satellite image through a machine learning decision tree approach. Rice production, plants variety, planting date, harvest date, and field coordinates were obtained by conducting interviews with farmers as well as field surveys. Paddy field coordinates then converted into area, and productivity per square area is generated based on the obtained data. The NDVI value per pitch for a single growing season is linked to the productivity of paddy through the machine learning decision tree. The best model on the combined varieties of Inpari 32 and MR 219 has a MAPE value of 5,077% with an accuracy 94,923%; RMSE ± 0,391 tons/ha; and R² 0,776. The best model on Inpari 32 varieties has a MAPE value of 4,16% with an accuracy 95,84%; RMSE ± 0,262 tons/ha; and R2 0,894. The best model on MR 219 varieties has a MAPE value of 1,339% with an accuracy 98,661%; RMSE ± 0,103 tons/ha; and R2 0,982.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/132738
      Collections
      • UT - Agricultural and Biosystem Engineering [3593]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository