Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/109508| Title: | Analisis Sentimen Pengguna Twitter Terhadap Vaksinasi Covid-19 Di Indonesia Menggunakan Algoritme Support Vector Machine |
| Other Titles: | Sentiment Analysis Of Twitter Users On COVID-19 Vaccination In Indonesia Using Support Vector Machine Algorithm |
| Authors: | Herdiyeni, Yeni Hardhienata, Medria Kusuma Dewi Chairunnisa, Qarry Atul |
| Issue Date: | 1-Oct-2021 |
| Publisher: | IPB University |
| Abstract: | Kebijakan vaksinasi COVID-19 di Indonesia menimbulkan pro dan
kontra. Pemerintah harus mengevaluasi alasan masyarakat yang kontra terhadap
kebijakan tersebut, agar program vaksinasi dapat berjalan dengan lancar. Analisis
sentimen sebagai cara untuk melihat polaritas opini, memungkinkan untuk
mengklasifikasi tanggapan positif, negatif maupun netral di Twitter terkait
kebijakan vaksinasi tersebut. Penelitian ini bertujuan untuk mengetahui tanggapan
masyarakat terhadap vaksinasi COVID-19 dengan melihat distribusi kata dan
membuat model klasifikasi Support Vector Machine (SVM). Analisis sentimen
terdiri dari beberapa tahapan yaitu pengumpulan data, praproses data, pembobotan
data, analisis data, pembagian data, pemodelan klasifikasi, hyperparameter tuning
dan evaluasi model. Model yang dihasilkan menunjukkan performa yang cukup
optimal dalam mengklasifikasi sentimen dengan akurasi, presisi, recall dan
f1-score sebesar 90%. Hasil analisis yang diperoleh ialah berupa gagasan, keluhan
dan saran terhadap vaksinasi COVID-19. The COVID-19 vaccination policy in Indonesia turns out to be both pros and cons. The government has to evaluate the underlying reason of why some people's are against the policy, so that the vaccination program can run smoothly. Sentiment analysis as a way to see the polarity of opinion, makes it possible to classify positive, negative or neutral responses on Twitter regarding the vaccination policy. This study aims to determine the public's response to COVID-19 vaccination by examining word distribution and creating an Support Vector Machine (SVM) classification model. Sentiment analysis consists of several stages, namely data collection, data preprocessing, data weighting, data analysis, data sharing, classification modeling, hyperparameter tuning and model evaluation. The results of this study are a model with a relatively optimal performance in classifying sentiment with an accuracy, precision, recall and f1-score of 90%. The results of the sentiment analysis obtained are in the form of ideas, complaints and suggestions for the COVID-19 vaccination. |
| URI: | http://repository.ipb.ac.id/handle/123456789/109508 |
| Appears in Collections: | UT - Computer Science |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| [Cover] G64170014_Qarry Atul Chairunnisa-halaman-1-13.pdf Restricted Access | Cover | 2.28 MB | Adobe PDF | View/Open |
| [Full teks]G64170014_Qarry Atul Chairunnisa.pdf Restricted Access | Full Text | 13.46 MB | Adobe PDF | View/Open |
| [Lampiran]G64170014_Qarry Atul Chairunnisa-halaman-41-53.pdf Restricted Access | Lampiran | 2.19 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.