View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Mathematics and Natural Sciences
      • UT - Computer Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Sentimen Pengguna Twitter Terhadap Vaksinasi Covid-19 Di Indonesia Menggunakan Algoritme Support Vector Machine

      Thumbnail
      View/Open
      Cover (2.226Mb)
      Full Text (13.14Mb)
      Lampiran (2.140Mb)
      Date
      2021-10-01
      Author
      Chairunnisa, Qarry Atul
      Herdiyeni, Yeni
      Hardhienata, Medria Kusuma Dewi
      Metadata
      Show full item record
      Abstract
      Kebijakan vaksinasi COVID-19 di Indonesia menimbulkan pro dan kontra. Pemerintah harus mengevaluasi alasan masyarakat yang kontra terhadap kebijakan tersebut, agar program vaksinasi dapat berjalan dengan lancar. Analisis sentimen sebagai cara untuk melihat polaritas opini, memungkinkan untuk mengklasifikasi tanggapan positif, negatif maupun netral di Twitter terkait kebijakan vaksinasi tersebut. Penelitian ini bertujuan untuk mengetahui tanggapan masyarakat terhadap vaksinasi COVID-19 dengan melihat distribusi kata dan membuat model klasifikasi Support Vector Machine (SVM). Analisis sentimen terdiri dari beberapa tahapan yaitu pengumpulan data, praproses data, pembobotan data, analisis data, pembagian data, pemodelan klasifikasi, hyperparameter tuning dan evaluasi model. Model yang dihasilkan menunjukkan performa yang cukup optimal dalam mengklasifikasi sentimen dengan akurasi, presisi, recall dan f1-score sebesar 90%. Hasil analisis yang diperoleh ialah berupa gagasan, keluhan dan saran terhadap vaksinasi COVID-19.
       
      The COVID-19 vaccination policy in Indonesia turns out to be both pros and cons. The government has to evaluate the underlying reason of why some people's are against the policy, so that the vaccination program can run smoothly. Sentiment analysis as a way to see the polarity of opinion, makes it possible to classify positive, negative or neutral responses on Twitter regarding the vaccination policy. This study aims to determine the public's response to COVID-19 vaccination by examining word distribution and creating an Support Vector Machine (SVM) classification model. Sentiment analysis consists of several stages, namely data collection, data preprocessing, data weighting, data analysis, data sharing, classification modeling, hyperparameter tuning and model evaluation. The results of this study are a model with a relatively optimal performance in classifying sentiment with an accuracy, precision, recall and f1-score of 90%. The results of the sentiment analysis obtained are in the form of ideas, complaints and suggestions for the COVID-19 vaccination.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/109508
      Collections
      • UT - Computer Science [2482]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository