Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/107601
Title: Formulasi Aditif Biodiesel B50 Berbasis Gliserol Ester dan Uji Stabilitas Penyimpanan
Other Titles: Formulation of Biodiesel B50 Additive Based on Glycerol Ester and Storage Stability Test
Authors: Hambali, Erliza
Panji, Tri
Muslich
Dimawarnita, Firda
Issue Date: 2021
Publisher: IPB University
Citation: Ali OM, Mamat R, Masjuki HH, Abdullah AA. 2016. Analysis of blended fuel properties and cycle-to-cycle variation in a diesel engine with a diethyl ether additive. Energy Conversion and Management. 108: 511-519. doi:10.1016/j.enconman.2015.11.035. Annamalai M, Dhinesh B, Nanthagopal K, SivaramaKrishnan P, Isaac JoshuaRamesh Lalvani J, Parthasarathy M, Annamalai K. 2016. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. Energy Conversion and Management. 123: 372-380. doi:10.1016/j.enconman.2016.06.062. Aricetti JA, Tubino M. 2012. A green and simple visual method for the determination of the acid-number of biodiesel. Fuel. 95: 659-661. doi:10.1016/j.fuel.2011.10.058. [ASTM] American Society for Testing and Material. 2002. Standard Test Methods. Washington DC: American Society for Testing and Material. Awang R, May CY. 2008. Water in oil emulsion of palm biodiesel. Journal of Oil Palm Research. 20: 571-576. Bhimani S, Alvarado JL, Annamalai K, Marsh C. 2013. Emission characteristics of methanol-in-canola oil emulsions in a combustion chamber. Fuel. 113: 97-106. doi:10.1016/j.fuel.2013.04.083. Bouaid A, Martinez M, Aracil J. 2007. Long storage stability of biodiesel from vegetable and used frying oils. Fuel. 86(16): 2596-2602. doi:10.1016/j.fuel.2007.02.014. Dachriyanus. 2004. Analisis Struktur Senyawa Organik Secara Spektroskopi. Universitas Andalas Padang. Das LM, Bora DK, Pradhan S, Naik MK, Naik SN. 2009. Long-term storage stability of biodiesel produced from Karanja oil. Fuel. 88(11): 2315-2318. doi:10.1016/j.fuel.2009.05.005. De Lira LFB, de Albuquerque MS, Pacheco JGA, Fonseca TM, Cavalcanti EHdS, Stragevitch L, Pimentel MF. 2010. Infrared spectroscopy and multivariate calibration to monitor stability quality parameters of biodiesel. Microchemical Journal. 96(1): 126-131. doi:10.1016/j.microc.2010.02.014. Dean SW, Vicentim MP, Barreto Sousa MV, Fernandes da Silva V, Mateus VL, Rodrigues JM, Smarçaro da Cunha V. 2010. Water Content Determination in Biodiesel: Optimization of Methodology in Coulometric Karl Fischer Titration. Journal of ASTM International. 7(2): 102615. doi:10.1520/jai102615. Debnath BK, Sahoo N, Saha UK. 2013. Adjusting the operating characteristics to improve the performance of an emulsified palm oil methyl ester run diesel engine. Energy Conversion and Management. 69: 191-198. doi:10.1016/j.enconman.2013.01.031. El-Araby R, Amin A, El Morsi AK, El-Ibiari NN, El-Diwani GI. 2018. Study on the characteristics of palm oil–biodiesel–diesel fuel blend. Egyptian Journal of Petroleum. 27(2): 187-194. doi:10.1016/j.ejpe.2017.03.002. Fayyad SM, Abu-Ein S, Al-Marahleh G, omani WaA-M, Al-Momani M, Abulghanam Z, Badran O, Abu-Rahmah T. 2010. Experimental Emulsified Diesel and Benzen Investigation. Research Journal of Applied Science, Engineering and Technology. 2 (3) 268-273. Fessenden R, Fessenden J. 1982. Kimia Organik. Jilid 2 Edisi Ketiga Jakarta (ID): Erlangga. Ghozali, M., Fauzi, L. R., & Triwulandari, E. 2016. Synthesis and Mechanical Properties of Polyurethane-modified Epoxy Based on Glycerol Monooleate Ester. Indonesian Joural of Appl.Chemistry. 18(01) 106-125. Hambali E, Permadi P, Astuti Y, Suryani A, Rivai M, Padil, Prihartono C. 2012. Pemilihan konsentrasi katalis PTSA untuk sintesis surfaktan alkil poligosida dari palm fatty alcohol dan glukosa cair 85% dari singkong untuk aplikasi EOR. Prosiding InSINAS ISSN 0392(136-140). Jain S, Sharma MP. 2010. Stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews. 14(2): 667-678.doi:10.1016/j.rser.2009.10.011. Joensen F, Nielsen PEH, Palis Sørensen MD. 2011. Biomass to green gasoline and power. Biomass Conversion and Biorefinery. 1(2): 85-90.doi:10.1007/s13399-011-0008-0. Kannan GR, Anand R. 2011. Experimental investigation on diesel engine with diestrolewater micro emulsions. Energy. 36: 1680-1687. doi:10.1016/j.energy.2010.12.062. Kegl B. 2008. Biodiesel usage at low temperature. Fuel. 87(7): 1306-1317. doi:10.1016/j.fuel.2007.06.023. Kerihue A, Kumar MS, Bellettre J, Tazerout M. 2006. Ethanol animal fat emulsions as a diesel engine fuel – Part 1: Formulations and influential parameters. Fuel. 85: 2640-2645. doi:10.1016/j.fuel.2006.05.002. Khalife E, Tabatabaei M, Najafi B, Mirsalim SM, Gharehghani A, Mohammadi P, Aghbashlo M, Ghaffari A, Khounani Z, Roodbar Shojaei T. 2017. A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–biodiesel blends to improve diesel engines performance and reduce exhaust emissions: Part I – Experimental analysis. Fuel. 207: 741-750. doi:10.1016/j.fuel.2017.06.033. Kirk R, Othmer D. 1994. Encyclopedia of Chemical Technology. Four Edition. New York (US): The Interscience Pub. Knothe G, Steidley KR. 2011. Kinematic viscosity of fatty acid methyl ester: prediction calculated viscosity contribution ef esters wit unavailable data, and carbon-oxygen equivalents. Fuel. 90 (11): 3217-3224. Kumar MS, jaikumar M. 2014. A comprehensive study on performance, emission and combustion behavior of a compression ignition engine fuelled with WCO (waste cooking oil) emulsion as fuel. Journal of the Energy Institute. 86 (1): 1-9.doi:10.1016/j.joei.2014.03.001. Leung DY, Koo BC, Guo Y. 2006. Degradation of biodiesel under different storage conditions. Bioresour Technology. 97 (2): 250-256. doi:10.1016/j.biortech.2005.02.006. Lin C-Y, Lin S-A. 2007. Effects of emulsification variables on fuel properties of two- and three-phase biodiesel emulsions. Fuel. 86: 210-2017. doi:10.1016/j.fuel.2006.06.007. Ma Y, Zheng L, Wang Q, Ma H, Niu R, Gao Z. 2015. Synergistic effect of mixed methanol/ethanol on transesterification of waste food oil usingp-toluenesulfonic acid as catalyst. Environmental Progress & Sustainable Energy. 34(5): 1547-1553. doi:10.1002/ep.12140. Mahmudul HM, Hagos FY, Mamat R, Adam AA, Ishak WFW, Alenezi R. 2017. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review. Renewable and Sustainable Energy Reviews. 72: 497-509. doi:10.1016/j.rser.2017.01.001. Melo-Espinosa EA, Piloto-Rodríguez R, Goyos-Pérez L, Sierens R, Verhelst S. 2015. Emulsification of animal fats and vegetable oils for their use as a diesel engine fuel: An overview. Renewable and Sustainable Energy Reviews. 47: 623-633. doi:10.1016/j.rser.2015.03.091. Neto AAD, Fernandes MR, Neto ELB, Dantas TNC, Moura MCPA. 2011. Alternativ fuel composed by blends of nonionic surfactant with diesel and water: engine performance and emissions. Brazilian Journal of Chemical Engineering. 28: 521-531. Ochoterena R, Li A, Nydén M, Andersson S, Denbratt I. 2010. Optical studies of spray development and combustion of water-in-diesel emulsion and microemulsion fuels. Fuel. 89: 122-132. doi:10.1016/j.fuel.2009.06.039. Pardi. 2005. Optimasi proses produksi gliserol monooleat dari gliserol hasil samping pembuatan biodiesel. [Tesis]. Medan: Sekolah Pascasarjana Universitas Sumatera Utara. Pouilloux Y, Abro S, Vanhove C, Barrault J. 1999. Reaction of glycerol with fatty acids in the presence of ion-exchane resins preparation of monoglycerides. Journal of Molecular Catalysis A: Chemical. 149: 243-254. Prakoso T, Hapsari S, Lembono P, Soerawidjaja T. 2006. Sintesis trigliserida rantai menengah melalui transesterifikasi gliserol dan asam-asam lemaknya. Jurnal Teknik Kimia Indonesia. 5 (3): 520-529. Putri G. 2014. Rasio molar dan konsentrasi katalis methyl ester sulfonic acid pada proses sintesis gliseril ester. [Skripsi]. Bogor (ID): Institut Pertanian Bogor. Qi DH, Chen H, Matthews RD, Bia YZ. 2010. Combustion and emission characteristics of ethanol–biodiesel–water micro-emulsions used in a direct injection compression ignition engine. Fuel. 89: 958-964. doi:10.1016/j.fuel.2009.06.029. Radhakrishnan S, Munuswamy DB, Devarajan Y, Mahalingam A. 2018. Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine. Heat and Mass Transfer. 55(4): 1229-1237. doi:10.1007/s00231-018-2509-x. Ramakrishnan G, Krishnan P, Rathinam S, R T, Devarajan Y. 2019. Role of nano-additive blended biodiesel on emission characteristics of the research diesel engine. International Journal of Green Energy. 16(6): 435-441.doi:10.1080/15435075.2019.1577742. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, Jaramillo-Jacob AdR. 2012. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel. 91(1): 102-111.doi:10.1016/j.fuel.2011.06.070. Reham SS, Masjuki HH, Kalam MA, Shancita I, Rizwanul Fattah IM, Ruhul AM. 2015. Study on stability, fuel properties, engine combustion, performance and emission characteristics of biofuel emulsion. Renewable and Sustainable Energy Reviews. 52: 1566-1579. doi:10.1016/j.rser.2015.08.013. Reyes JSdl, Charcosset C. 2010. Preparation of water-in-oil and ethanol-in-oil emulsions by membrane emulsification. Fuel. 89: 3482-3488. doi:10.1016/j.fuel.2010.06.036. Rida Mulyana DK, Arie Rahmadi, Edi Wibowo, Imam Paryanto, Cahyo S Wibowo, Rizqon fajar, Iman K Reksowardojo. 2014. Laporan Kajian dan Uji Pemanfaatan Biodiesel B20. Direktorat Jenderal Energi Baru, Terbarukan dan Konservasi Energi Kementerian Energi dan Sumber Daya Mineral. Jakarta: Kementerian ESDM Sadhik Basha J. 2018. Impact of Carbon Nanotubes and Di-Ethyl Ether as additives with biodiesel emulsion fuels in a diesel engine – An experimental investigation. Journal of the Energy Institute. 91(2): 289-303. doi:10.1016/j.joei.2016.11.006. Sadhik Basha J, Anand RB. 2014. Performance, emission and combustion characteristics of a diesel engine using Carbon Nanotubes blended Jatropha Methyl Ester Emulsions. Alexandria Engineering Journal. 53(2): 259-273. doi:10.1016/j.aej.2014.04.001. Saaty, T.L. 2004. Decision making-the analytical hierarchy and network processes (AHP/ANP). Journal of System Science and System Engineering. 13(1): 1-35. Sari VI, Hambali E, Suryani A, Permadi P. 2017. Preliminary study of glycerol ester usage as primary and secondary emulsifier on oil based mud formulation. Journal Advanced Research. 5(5): 1264-1273. Settle. 1997. Handbook of Instrumental Technique for Analytical Chemistry. Virginia (US): National Science Foundation. Sheriff SA, Kumar IK, Mandhatha PS, Jambal SS, Sellappan R, Ashok B, Nanthagopal K. 2020. Emission reduction in CI engine using biofuel reformulation strategies through nano additives for atmospheric air quality improvement. Renewable Energy. 147(2295-2308.doi:10.1016/j.renene.2019.10.041. [SNI] Standar Nasional Indonesia. 1995. SNI 01-3555-1998: Minyak dan Lemak. Jakarta: SNI. [SNI] Standar Nasional Indonesia. 2015. SNI 7185-2015: Biodiesel. Jakarta: SNI. Tadros Tf. 2013. Emulsion formation, stability, and rheology. Wiley-VCH Verlag GmbH & Co. KGaA First edition(1-73). Tran TT, Kaiprommarat S, Kongparakul S, Reubroycharoen P, Guan G, Nguyen MH, Samart C. 2016. Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst. Waste Management. 52: 367-374. doi: 10.1016/j.wasman.2016.03.053. Uzwatania F, Hambali E, Suryani A. 2017. Sintesis surfaktan alkil poliglikosida (APG) berbasis dodekanol dan heksadekanol dengan reaktan glukosa cair 75%. Jurnal Teknologi Industri Pertanian. 27(1): 9-16. Vellaiyan S. 2020. Enhancement in combustion, performance, and emission characteristics of a biodiesel-fueled diesel engine by using water emulsion and nanoadditive. Renewable Energy. 145(2108-2120.doi:10.1016/j.renene.2019.07.140. Vellaiyan S, Subbiah A, Chockalingam P. 2018. Combustion, performance, and emission analysis of diesel engine fueled with water-biodiesel emulsion fuel and nanoadditive. Environ Sci Pollut Res Int. doi:10.1007/s11356-018-3216-3. Vellaiyan S, Subbiah A, Chockalingam P. 2019. Multi-response optimization to improve the performance and emissions level of a diesel engine fueled with ZnO incorporated water emulsified soybean biodiesel/diesel fuel blends. Fuel. 237: 1013-1020. doi:10.1016/j.fuel.2018.10.057. Viarani, S.O., & Zadry, H.R. 2016. Analisis pemilihan pemasok dengan metode analytical hierarchy process di proyek indarung VI PT Semen Padang. Jurnal Optimasi Sistem Industri. 14 (1): 55-70. Wahyudi J, Wibowo WA, Rais YA, Kusumawardani A. 2011. Pengaruh suhu terhadap kadar glukosa terbentuk dan konstanta kecepatan reaksi pada hidrolisa kulit pisang. Prosiding Seminar Nasional Teknik Kimia. ISSN 1693-4393: 1-5. Wahyuni S, Hambali E, Marbun BTH. 2016. Esterifikasi gliserol dan asam lemak jenuh sawit dengan katalis MESA. Jurnal Teknologi Industri Pertanian. 26(3): 333-342. Wrdhana, D.A.K.,&Prastawa, H. 2018. Analisis pemilihan supplier dengan menggunakan metode analytical hierarchy process (studi kasus: UMKM Diana Bakery). Industrial Engineering Online Journal. 6(4): 25-32. Westfechtel A, M D, M H. 2012. Oligoglycerol fatty acid ester additives for water-based drilling fluids. U.S. Patent No. 8,148,305. Yang WM, H. An SKC, Vedharaji S, Vallinagam R, Balaji M, Mohammad FEA, Chua KJE. 2013. Emulsion fuel with novel nano-organic additives for diesel engine application. Fuel. 104(726-731.doi:10.1016/j.fuel.2012.04.051.
Abstract: Fatty Acid Methyl Ester (FAME) merupakan biodiesel yang saat ini digunakan di Indonesia. Pencampuran FAME dan diesel oil masih terdapat kendala: FAME terpisah dengan diesel oil pada suhu rendah. Penurunan kualitas biodiesel disebabkan perubahan sifat fisiko kimia selama penyimpanan, karena adanya oksigen terlarut yang berpotensi merusak mesin. Permasalahan tersebut dapat diatasi dengan aditif gliserol ester (GE). Penelitian ini terdiri atas dua tahap. Pertama, sintesis GE dengan mereaksikan gliserol 99,9% dan asam oleat (1:1 mol/mol) menggunakan katalis PTSA dialiri gas nitrogen 100 cc/menit. Reaksi esterfikasi dilakukan pada suhu 140, 160, 180, dan 240oC pengadukan 400 rpm selama 180 menit. Analisis fisiko kimia GE meliputi: rendemen, angka asam, densitas, viskositas kinematis, dan FTIR. Tahap kedua adalah GE terbaik digunakan sebagai aditif pada biodiesel B50. Jenis aditif divariasikan yaitu GE dan aditif komersial dietil eter (DEE) konsentrasi 1000, 2000, dan 3000 ppm, suhu penyimpanan 25, 12, dan 42oC. Pengujian stabilitas penyimpanan selama 3 bulan, meliputi: angka asam, viskositas, laju korosifitas, dan kadar air. Sintesis gliserol ester suhu terbaik berdasarkan metode Analytical Hierarchy Process (AHP) adalah suhu 160oC dengan atribut rendemen, pH, angka asam, viskositas kinematis, densitas. Rendemen pada suhu 160oC sebesar 95,66%, pH 7, nilai angka asam 11,28 mg KOH/g sampel, viskositas kinematis 75,76 cst, dan densitas 0,944 g/cm3. Hasil sintesis gliserol ester terbaik digunakan untuk aditif biodiesel B50 dengan uji stabilitas penyimpanan selama 3 bulan pada suhu 25, 12, dan 42oC. Parameter ujinya adalah angka asam, viskositas kinematis, korosifitas, dan kadar air. Nilai angka asam dari variasi jenis dan konsentrasi aditif masih memenuhi standar SNI 7182-2015 (0,5 mg KOH/g sampel) dengan rentang nilai 0,148-0,392 mg KOH/g sampel. Viskositas kinematis memiliki rentang nilai 3,12- 3,58 cst yang juga memenuhi standar SNI 7182-2015 (2,3-6 cst). Laju korosifitas tertinggi ada pada minggu ke-1 sebesar 0,447 mpy (GE) dan 0,261 mpy (DEE). Kadar air tertinggi pada hari ke-18 (0,046%), aditif GE 1000 ppm dan kontrol, yang artinya penambahan aditif dapat mempertahankan kadar air pada biodiesel B50. Secara keseluruhan variasi jenis aditif dan konsentrasi memenuhi standar SNI biodiesel 7182-2015. Berdasarkan hasil uji ANOVA dan Duncan (α = 0,05) menunjukkan bahwa suhu sintesis berpengaruh nyata pada rendemen. Suhu sintesis 140oC menghasilkan rendemen yang berbeda nyata, sedangkan suhu 160oC, 180oC, dan 240oC tidak berbeda nyata. Suhu sintesis berpengaruh nyata terhadap angka asam dan viskositas. Uji stabilitas penyimpanan menunjukkan perlakuan jenis, konsentrasi aditif, dan suhu penyimpanan berpengaruh nyata pada angka asam dan viskositas. Uji laju korosifitas menunjukkan bahwa jenis aditif berpengaruh nyata terhadap laju korosifitas. Faktor jenis dan konsentrasi aditif juga berpengaruh nyata pada kadar air, interaksi kedua faktor tersebut mulai terlihat pada hari ke 24.
Fatty Acid Methyl Ester (FAME) is a biodiesel currently used in Indonesia. However, the obstacles of mixing FAME with diesel oil: FAME separates from diesel oil at low temperatures. Physicochemical properties also lead to a decrease in the quality of biodiesel during storage due to dissolved oxygen can possibly damage the engine. The addition of glycerol ester (GE)-based additives can solve this problem. This investigation consists of two phases. The first step is to synthesize GE by reacting 99.9% glycerol with oleic acid (1:1 mol/mol) using a PTSA catalyst flowing at 100 cc/min N2 gas. The esterification reaction was carried out at temperatures of 140, 160, 180, and 240oC with a stirring of 400 rpm for 180 minutes. The physicochemical properties of GE were analyzed: yield, acid number, density, kinematic viscosity, and FTIR. The second stage is the best GE from the first stage is used as an additive to biodiesel B50. The types of additives were varied GE and diethyl ether (DEE) with concentrations of 1000, 2000, and 3000 ppm, storage temperatures of 25, 12, and 42oC. The storage stability test was carried out for three months for: acid number, viscosity, corrosion rate, and water content. The best temperature synthesis of GE based on AHP was at 160oC from yield, pH, acid number, kinematic viscosity, density. The result at 160oC was 95.66%, pH 7, acid number 11.28 mg KOH/g sample, kinematic viscosity was 75.76 cst and density 0.944 g/cm3. The best results of the synthesis of GE were used for the biodiesel additive B50 with a storage stability test for 3 months at temperatures of 25, 12, and 42oC. The test parameters are acid number, kinematic viscosity, corrosiveness, and water content. The value of the acid number from the variation of the type and concentration of the additives still corresponds to the SNI 7182-2015 (0.5 mg KOH/g sample) with a value range of 0.148-0.392 mg KOH/g sample. The kinematic viscosity has a value range of 3.12-3.58 cst corresponds to the SNI 7182-2015 (2.3-6 cst). The highest corrosivity rate at week 1 was 0.447 mpy (GE) and 0.261 mpy (DEE). On the 18th day, the highest water content of 0.046% was found in the 1000 ppm GE and control, which means that the addition of the additive can maintain the water content of the B50. Overall, the type and concentration of additive still met the biodiesel standard SNI 7182-2015. The results of the ANOVA and Duncan's tests (α = 0.05), it was shown that the synthesis temperature had a significant influence on the yield. The synthesis temperature of 140°C led to significantly different yields, but another temperatures didn’t. The synthesis temperature of GE, types, additive concentrations, and storage temperatures significantly affected the acid number and viscosity. The type of additive had a significant influence on the corrosion rate. The factor type and concentration of the additives also influenced the water content significantly, with the interaction of the two factors becoming visible from the 24th day.
URI: http://repository.ipb.ac.id/handle/123456789/107601
Appears in Collections:MT - Agriculture Technology

Files in This Item:
File Description SizeFormat 
Cover.pdfCover997.12 kBAdobe PDFView/Open
F351190071_Firda Dimawarnita_Tesis Full.pdf
  Restricted Access
Fullteks3 MBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran2.16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.