Show simple item record

dc.contributor.authorDjuraidah, Anik
dc.date.accessioned2012-04-09T02:23:04Z
dc.date.available2012-04-09T02:23:04Z
dc.date.issued2007
dc.identifier.issn1978-4538
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/54057
dc.description.abstractLogistic regression can be mapped equivalent to artificial neural network (ANN) without hidden layer with logistic as activation junction, hence logistic regression is subset of ANN The result study on binary and poly-chotolnous response data show that parameter estimation values of ANN and logistic regression are similar. In comparison with ANN. logistic regression has standard procedure for estimation and testing parameter.en
dc.publisherJurusan Pendidikan Matematika FMIFA UNY
dc.relation.ispartofseriesVolume 3,Nomor 1, Juni;
dc.subjectlogistic regressionen
dc.subjectgeneralized linear modelen
dc.subjectartificial neural networken
dc.subjectactivation functionen
dc.subjecthidden layeren
dc.titlePendugaan Parameter Regresi Logistik Dengan Jaringan Syaraf Tiruanen
dc.typeArticleen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record