Pengembangan Model Jaringan Syaraf Tiruan Probabilistik (PNN) Pada Identifikasi Pembicara
Abstract
Sistem komputer dapat dimanfaatkan untuk mengidentifikasi pembicara dari suara yang diucapkan. Penelitian ini memperkenalkan pengembangan model jaringan syaraf tiruan probabilistik pada identifikasi pembicara dengan pendekatan metoda text-dependent. Kami menggunakan kombinasi metoda analisis komponen utama (PCA) dengan metoda Mel-Frequency Cepstral Coefficient (MFCC) pada proses ekstraksi ciri dengan beberapa parameter yaitu koefisien Mel, lebar frame, lebar overlap dan rasio nilai eigen untuk meningkatkan kinerja PNN. Untuk mengukur rata-rata keluaran yang dihasilkan oleh PNN digunakan metoda Leave-one out. Hasil penelitian menunjukkan bahwa penggunaan koefisien mel 20, ukuran frame 40 ms, ukuran overlap 50% pada metoda MFCC menghasilkan data yang mampu memberi nilai ketelitian identifikasi pembicara sebesar 96%. Implementasi metoda PCA dengan rasio nilai eigen 95% ke data yang dihasilkan metoda MFCC juga memberikan nilai ketelitian hingga 96% dengan waktu komputasi 90% lebih baik.