View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Model Based Analysis Cluster Study in Normal Distribution Multivariate Data

      Kajian Analisis Gerombol Berbasis Model pada Data yang Menyebar Normal Ganda

      Thumbnail
      View/Open
      Full Text (1.858Mb)
      Abstrak (281.3Kb)
      Bab I (436.2Kb)
      Bab II (745.4Kb)
      Bab III (637.6Kb)
      Bab IV (1.019Mb)
      Bab V (431.1Kb)
      Cover (303.4Kb)
      Daftar Pustaka (324.1Kb)
      Lampiran (1.382Mb)
      Date
      2011
      Author
      Ratih Anggriyani, Indah
      Sadik, Kusman
      Syafitri, Utami Dyah
      Metadata
      Show full item record
      Abstract
      Cluster analysis is data method classify objects into groups based on similarity or dissimilarity. One of approach is model based clustering. The assumptions used is the data derived from a mixture of two or more distribution probability with certain proportions. The final cluster is determined by BIC. The object of each cluster were obtained by EM algorithm. This study aims to assess the effectiveness of the model based clustering on the data are from multivariate normal distribution. Effectiveness would include the percentage of classification errors produced at a several distance, comparing with the k-means, and their application. If the distance between the center of a large and diverse cluster each different variables, then averaging the resulting classification error rate small. generally model based to cluster is more effective than the method of k-means. The MAP was better than the MLE since it can overcome the singularity problem, the rest same as MLE.
       
      Analisis gerombol merupakan suatu metode penggerombolan yang bertujuan untuk mengelompokkan objek ke dalam beberapa kelompok sedemikian hingga objek yang berada di dalam kelompok yang sama cenderung mempunyai karakteristik yang lebih homogen dari pada objek yang berada di kelompok yang berbeda. Hal ini dilakukan dengan suatu ukuran jarak seperti jarak euclidean. Pengukuran kemiripan antar objek dengan menggunakan jarak akan sangat sulit dilakukan jika ukuran data yang digunakan sangat besar dan kondisi objek yang ada saling tumpang tindih. Dengan memperhatikan sebaran dari data yang digunakan untuk penggerombolan, Mclachlan dan Basford (1988) memberikan suatu pendekatan terbaru dalam analisis gerombol yaitu penggerombolan berbasis model campuran. Metode ini mengasumsikan bahwa sebaran data yang digunakan adalah sebaran campuran dengan setiap subpopulasi mewakili suatu gerombol yang berbeda. Tujuan dari metode ini adalah untuk mengoptimalkan kemiripan antar objek dengan menggunakan pendekatan model peluang. Tehnik perpindahan objek berdasarkan pada algoritma Expectation Maximization (EM) dan penentuan jumlah gerombol ditentukan berdasarkan nilai Bayes Information Criterion (BIC) terbesar. Penggunaan algoritma EM dalam pendugaan parameternya dikarenakan algoritma tersebut merupakan metode perhitungan iterasi yang sangat cocok untuk pendugaan parameter dari fungsi kemungkinan pada data tidak lengkap seperti yang terdapat pada sebaran campuran.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/52427
      Collections
      • MT - Mathematics and Natural Science [4149]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository