View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Estimation of Small Area Statistics using Beta-Binomial Model

      Pendugaan Statistik Area Kecil dengan Menggunakan Model Beta-Binomial

      Thumbnail
      View/Open
      Full Text (2.500Mb)
      Abstrak (307.3Kb)
      Bab I (312.6Kb)
      Bab II (370.2Kb)
      Bab III (360.4Kb)
      Bab IV (1.541Mb)
      Bab V (307.1Kb)
      Cover (331.3Kb)
      Daftar Pustaka (323.7Kb)
      Lampiran (856.7Kb)
      Date
      2011
      Author
      Abadi, Slamet
      Wijayanto, Hari
      Rahman, La Ode Abdul
      Metadata
      Show full item record
      Abstract
      Small area estimation is commonly used to describe smaller domain or population. Small Area Estimation is an important technique to estimate parameter of smaller domain borrowing strength of population parameter estimate through statistics models with random effect. This research is focused in modeling binary data in small area estimation with empirical bayes method. This method is applicable more generally in the sense of handling models for binary and count data. The Beta-binomial model can be used to calculate the proportion of each small area and its variance. This model estimates the parameters of proportion using momen Kleinman method of Beta-Binomial model and the we also compare the MSE of indirect estimation using Naïve, Jackknife, and Bootstap methods. The result shaved that the MSE of indirect estimation lower than the direct estimation. Moreover, the MSE of indirect estimation using Naïve, Jackknife, and Bootstap methods relatively the same. This indirect estimation using Beta-Binomial model were applied to analyze the proportion of poor household in Bekasi district. The result showed that Jakasampurna, Ciketingudik, Bintara Jaya, Jatiluhur, Cikiwul, Mustika Jaya, and Perwira and could be categorized as villages having more poor household.
       
      Suatu pendugaan untuk meningkatkan ukuran contoh dan menurunkan galat baku adalah pendugaan tak langsung. Pendugaan ini memanfaatkan informasi tambahan yang diperoleh dari area kecil lain yang memiliki karakteristik yang serupa. Menurut Rao (2003) prosedur pendugaan area kecil pada dasarnya memanfaatkan informasi dari area itu sendiri, area sekitarnya atau bahkan survei yang berbeda. Pendugaan area kecil bermanfaat untuk menduga parameter area yang berukuran contoh kecil. Pada data biner, model Beta-Binomial dapat digunakan untuk menduga parameter area kecil. Ada dua metode dalam pendugaan area kecil untuk data biner, yaitu metode Bayes empirik dan Bayes hirarki. Penelitian ini menggunakan metode Bayes empirik yang mampu menampung informasi antar area dan mereduksi kuadrat tengah galat.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/52186
      Collections
      • MT - Mathematics and Natural Science [4149]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository