View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Perbandingan metode voting feature intervals dengan jaringan saraf tiruan dalam mengklasifikasi genre musik

      Thumbnail
      View/Open
      Full text (1.545Mb)
      Abstract (380.4Kb)
      Cover (384.9Kb)
      Bab I (291.3Kb)
      Bab II (1.235Mb)
      Bab III (311.9Kb)
      Bab IV (594.8Kb)
      Bab V (283.6Kb)
      Daftar Pustaka (422.3Kb)
      Lampiran (332.7Kb)
      Date
      2011
      Author
      Syahzam
      Metadata
      Show full item record
      Abstract
      Music genre is one of the important descriptions that have been used to classify digital music. The aim of this research is to compare Voting Feature Intervals (VFI) methode with the Neural Network (NN) methode in classifying music genre. There are 12 scenarios of feature extractions in this research. Three variations of MFCC coefficient number (7, 13 and 20 coefficients) and four variations of music length (1, 5, 10, and 30 seconds). From each of the feature vector, mean was calculated. For the NN methode after the feature vectors were extracted, normalization was applied using the cumulative normal distribution methode. This research shown that the optimal number of MFCC coefficients was 13 coefficients. NN predictions were better than VFI predictions. NN has an accuracy up to 95% which was obtained by using 30 neurons of hidden layer, 10 seconds length of music and 13 MFCC coefficients. While the VFI has an accuracy up to 85% which was obtained by using 30 seconds length of music and 7 MFCC coefficients. Both experiments that used 13 and 20 coefficients of MFCC feature obtained same accuracy using the NN method. Classic genre has an accuracy of 100% in VFI. The reliability of the system was 57,14% for disco up to 94,44% for classic.
      URI
      http://repository.ipb.ac.id/handle/123456789/51601
      Collections
      • MT - Mathematics and Natural Science [4149]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository