View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Deteksi Penyakit Bercak Daun Alternaria dan Busuk Hitam pada Kembang Kol (Brassica oleracea var. botrytis) Berbasis Deep Learning

      Thumbnail
      View/Open
      Cover (503.7Kb)
      Fulltext (2.948Mb)
      Lampiran (3.124Mb)
      Date
      2024
      Author
      Rijaldi, Rizki Moch
      Liyantono, Liyantono
      Giyanto, Giyanto
      Metadata
      Show full item record
      Abstract
      Produksi kembang kol pada tahun 2022 menurun sebesar 5,54% dari produksi tahun sebelumnya. Penurunan produksi dapat disebabkan oleh berbagai faktor, salah satunya adalah serangan hama dan penyakit. Deteksi terhadap penyakit tertentu serta tindakan pengendalian yang tepat oleh petani sangat diperlukan untuk mencegah kerugian yang ditimbulkan. Tujuan dari penelitian ini adalah membuat model deep learning untuk deteksi penyakit bercak daun alternaria dan busuk hitam pada kembang kol dan mengintegrasikannya dengan website sebagai sistem pakar. Tahapan penelitian terdiri dari (1) pengumpulan dataset, (2) augmentasi dataset, (3) pelabelan dataset, (4) training model, (5) evaluasi model, dan (6) implementasi model. Dataset terdiri dari 3 kelas yaitu bercak daun alternaria, busuk hitam, dan sehat. Hasil evaluasi model pada 354 gambar uji menunjukkan bahwa YOLOv8 memiliki accuracy 99%, precision 98,89%, recall 98,60%, dan F1-score 98,74%. SSD MobileNetV2 memiliki accuracy 96,24%, precision 94,11%, recall 91,73%, dan F1-score 92,91%. Dengan demikian, YOLOv8 lebih baik dalam mendeteksi penyakit kembang kol dan telah mampu mendeteksi penyakit kembang kol dengan akurasi yang tinggi. Model dapat digunakan untuk mendeteksi penyakit kembang kol melalui website yang dikembangkan menggunakan HTML, CSS, dan Flask yang dapat diakses secara publik.
       
      The production of cauliflower in 2022 decreased by 5.54% compared to the previous year. This decline in production can be attributed to various factors, one of which is pest and disease infestation. Detection of specific diseases and appropriate control measures by farmers are crucial to prevent resulting losses. The objective of this research is to develop a deep learning model for detecting alternaria leaf spot and black rot diseases in cauliflower and integrate it into a website as an expert system. The research phases consist of (1) dataset collection, (2) dataset augmentation, (3) dataset labeling, (4) model training, (5) model evaluation, and (6) model implementation. The dataset comprises three classes: alternaria leaf spot, black rot, and healthy. The evaluation results of the model on 354 test images show that YOLOv8 achieves an accuracy of 99%, precision of 98,89%, recall of 98,60%, and F1-score of 98,74%. SSD MobileNetV2 achieves an accuracy of 96,24%, precision of 94,11%, recall of 91,73%, and F1-score of 92,91%. Therefore, YOLOv8 is superior in detecting cauliflower diseases and has demonstrated high accuracy in detecting cauliflower diseases. The model can be used to detect cauliflower diseases through a website developed using HTML, CSS, and Flask, which can be executed on a local The model can be used to detect cauliflower diseases through a website developed using HTML, CSS, and Flask, which is publicly accessible.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/152750
      Collections
      • UT - Agricultural and Biosystem Engineering [3593]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository