View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Rancang Bangun Machine Vision untuk Evaluasi Keragaan Benih Bawang Merah dari True Shallot Seed (TSS) pada Lingkungan Terkendali

      Thumbnail
      View/Open
      Cover (257.1Kb)
      Fullteks (1.261Mb)
      Lampiran (574.1Kb)
      Date
      2024
      Author
      Desrizal, Fahri
      Solahudin, Mohamad
      Metadata
      Show full item record
      Abstract
      Evaluasi keragaan benih bawang merah memainkan peran krusial dalam proses budidaya tanaman, mempengaruhi kualitas dan produktivitas. Fokus penelitian ini adalah merancang sistem machine vision otomatis untuk mengevaluasi keragaan benih bawang merah secara akurat. Penelitian melibatkan beberapa tahapan, termasuk perancangan sistem pemantauan, perangkat semaian, persiapan persemaian, dan uji kinerja sistem. Dua kamera ditempatkan di bagian atas dan samping baki tanam, terhubung dengan program di Raspberry Pi. Program ini dapat mengolah citra untuk menghitung parameter keragaan benih, seperti jumlah bibit, daun, tinggi daun, dan diameter daun. Evaluasi sistem pada kamera 1 menunjukkan nilai error 2,4% untuk jumlah bibit, sedangkan pada kamera 2, nilai error untuk jumlah daun, tinggi daun, dan diameter daun adalah masing-masing 2,6%, 2,3%, dan 2,7%. Sistem ini berhasil melakukan evaluasi otomatis setiap hari pada jam 10 pagi selama masa persemaian.
       
      The evaluation of shallot seed performance is a crucial aspect in the cultivation process, influencing the quality and productivity of the crop. This research focuses on designing an automated machine vision system to accurately assess the performance of shallot seeds. The study involves several stages, including the design of a monitoring system, seeding devices, seedling preparation, and performance testing of the monitoring system. Two cameras are positioned at the top and side of the planting tray, connected to a program on a Raspberry Pi. This program processes images to calculate parameters such as the number of seedlings, leaves, leaf height, and leaf diameter. The evaluation results from camera 1 show an error rate of 2.4% for the number of seedlings, while on camera 2, the error rates for the number of leaves, leaf height, and leaf diameter are 2.6%, 2.3%, and 2.7%, respectively. The system successfully conducts automated evaluations every day at 10 AM during the seedling period.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/141990
      Collections
      • UT - Agricultural and Biosystem Engineering [3593]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository