View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Civil and Environmental Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Civil and Environmental Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Identifikasi Penggunaan Koagulan dan Flokulan pada Instalasi Pengolahan Air Limbah Tambang Emas Berbasis Jaringan Saraf Tiruan

      Thumbnail
      View/Open
      Cover (224.6Kb)
      Fulltext (3.541Mb)
      Lampiran (3.200Mb)
      Date
      2023
      Author
      Habibie, Rosihanudin Yusuf
      Saptomo, Satyanto Krido
      Metadata
      Show full item record
      Abstract
      Salah satu resiko kerusakan lingkungan karena kegiatan pertambangan emas, yaitu air limbah. Instalasi pengolahan air limbah (IPAL) perusahaan tambang emas belum memiliki teknologi maju untuk menangani air limbah. Jaringan saraf tiruan (JST) sebagai hasil perkembangan teknologi 4.0 digunakan sebagai solusi permasalahan IPAL tersebut. Penelitian ini bertujuan untuk mengidentifikasi penggunaan koagulan dan flokulan pada IPAL tambang emas menggunakan basis jaringan saraf tiruan. Algoritma yang digunakan JST merupakan model feedforward neural network untuk menganalisis data sianida (CN), derajat keasaman (pH), dan total suspended solid (TSS), serta reagen koagulan flokulan IPAL perusahaan tambang. Model JST menggunakan 6 parameter input, 2 parameter output, dan 6 hidden layer sebanyak 512, 256, 128,64, 32, 2 serta menghasilkan nilai evaluasi MSE 0,0076. Evaluasi hasil prediksi dibandingkan data aktualnya menunjukan hasil yang baik ditinjau dari persamaan regresi dan koefisien determinasi. Namun masih ada titik poin yang berada jauh dari garis trendline, sehingga menunjukan hasil belum bagus. Hasil Program JST tidak dapat direkomendasikan untuk digunakan secara langsung pada operasional IPAL tambang emas.
       
      One of the risks of environmental damage due to gold mining activities is wastewater. Gold mining companies' wastewater treatment plants (IPAL) do not yet have advanced technology to handle waste water. Artificial neural networks (ANN) as a result of the development of technology 4.0 are used as a solution to the IPAL problem. This research aims to identify the use of coagulants and flocculants in gold mining WWTPs using an artificial neural network basis. The algorithm used by JST is a feedforward neural network model to analyze data on cyanide (CN), degree of acidity (pH), and total suspended solids (TSS), as well as flocculant coagulant reagents for mining companies' WWTPs. The ANN model uses 6 input parameters, 2 output parameters, and 6 hidden layers totaling 512, 256, 128.64, 32, 2 and produces an MSE evaluation value of 0.0076. Evaluation of the prediction results compared to the actual data shows good results in terms of the regression equation and coefficient of determination. However, there are still points that are far from the trendline, so the results are not good. The results of the JST Program cannot be recommended for direct use in gold mining IPAL operations.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/125635
      Collections
      • UT - Civil and Environmental Engineering [1042]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository