View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Carbon Stock Estimation Using Worldview-2 Imagery in The Seagrass Bed of Kodingareng Island, Spermonde Archipelago, South Sulawesi

      Thumbnail
      View/Open
      Cover (477.4Kb)
      Fullteks (10.09Mb)
      Lampiran (483.5Kb)
      Date
      2022
      Author
      Bando, Nur Rahmah Syarif
      Siregar, Vincentius P.
      Wouthuyzen, Sam
      Amran, Muhammad Anshar
      Metadata
      Show full item record
      Abstract
      The island of Kodingareng Lompo has a seagrass bed, including various species. Kodingareng Lompo Island's carbon stock must be determined to understand the significance of seagrass as one of the carbon-storing marine plants that may reduce/prevent global warming, the carbon stock of Kodingareng Lompo Island must be assessed. Due to the absence of carbon data for seagrass, particularly on Kodingareng Lompo Island, an inventory and mapping of seagrass carbon distribution must be conducted. It is anticipated that WorldView-2 images will map biophysical information about seagrass meadows. Using WorldView-2, this research aimed to quantify the carbon stock in Kodingareng Lompo Island's seas. The classification of seagrass distribution is performed to establish which classification method is acceptable for analysis; the SVM algorithm is the classification algorithm that supports this study. Where the accuracy of the map for rare to dense seagrass cover classes is 81.03%, and the classification of high and low-class cover classes where this map is based on cover classes generalized to high and low cover only produces an accuracy value of 88.46%, the accuracy of the map for high and low cover classes is only 88.46%. Kappa 0.84. Through multi-spectral classification utilizing the support vector machine (SVM) algorithm, the composition of the class of seagrass species was determined to be as follows: ThCrHu (Thalassia hemprichii, Cymodoicea rotundata, Halodule uninervis), SiHo (Syringodium isoethifolium, Halophila ovalis), and Ea (Enhalus acoroides). The low accuracy score of seagrass composition, 38.32%, suggests that identifying biota with several species using high-resolution photography is still a difficulty that researchers must overcome. r2 for empirical modeling of AGC seagrass is 0.700. The DII23 water column correction channel offers the greatest precision for seagrass AGC mapping, with a Standard Error of Estimate (SE) of 2.73. Using the DII23 transformation, the total carbon content of seagrass on Kodingareng Lompo Island is calculated to be 4,874,070 gC/m2 (4.8 Ton C/m2).
       
      Padang lamun dengan berbagai jenis spesies dapat ditemukan di Indonesia, salah satunya terletak di Pulau Kodingareng Lompo. Oleh karena itu, pentingnya lamun sebagai salah satu vegetasi laut penyimpan karbon yang dapat mengurangi/mencegah pemanasan global, maka stok karbon di Pulau Kodingareng Lompo perlu diketahui. Karena kurangnya data karbon untuk lamun, khususnya di Pulau Kodingareng Lompo, maka perlu dilakukan inventarisasi dan pemetaan sebara karbon lamun. Citra WorldView-2 diharapkan dapat memetakan informasi biofisik padang lamun. Tujuan dari penelitian ini adalah untuk mengestimasi stok karbon di atas perairan di Pulau Kodingareng Lompo menggunakan WorldView-2. Klasifikasi sebaran lamun dilakukan untuk menentukan jenis algoritma yang sesuai untuk analisis, jenis klasifikasi algoritma yang mendukung dalam penelitian ini yaitu algoritma SVM. Dimana, hasil nilai akurasi peta kelas tutupan lamun jarang hingga padat 81,03 % dan klasifikasi kelas tutupan kelas tinggi dan rendah dimana peta ini didasarkan pada kelas tutupan yang di generalisasi pada tutupan tinggi dan rendah saja menghasilkan nilai akurasi adalah 88,46% dengan nilai kappa 0,84. Komposisi jenis lamun ditetapkan melalui klasifikasi multispektral menggunakan algoritma support vector machine (SVM), dengan komposisi kelas jenis lamun yang diperoleh adalah ThCrHu (Thalassia hemprichii, Cymodoicea rotundata, Halodule uninervis), SiHo (Syringodium isoetifolium, Halophila ovalis), dan Ea (Enhalus acoroides). Nilai akurasi komposisi lamun yang belum memadai sebesar 38,32% menunjukkan bahwa mengidentifikasi biota dengan variasi spesies menggunakan citra resolusi tinggi masih merupakan suatu tantangan yang harus dihadapi peneliti. Pemodelan empiris AGC lamun memiliki r2 sebesar 0,700. Dengan Standard Error of Estimate (SE) sebesar 2,73, kanal koreksi kolom air DII23 memiliki akurasi tertinggi untuk pemetaan AGC lamun. Dengan menggunakan transformasi DII23, total estimasi karbon lamun di Pulau Kodingareng Lompo adalah 4.874.070 gC/m2 (4,8 Ton C/m2).
       
      URI
      http://repository.ipb.ac.id/handle/123456789/114064
      Collections
      • MT - Mathematics and Natural Science [4150]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository