View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Undergraduate Theses
      • UT - Faculty of Agricultural Technology
      • UT - Agricultural and Biosystem Engineering
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Klasifikasi Mutu Tomat Cherry Berdasarkan Warna Menggunakan Pengolahan Citra

      Thumbnail
      View/Open
      Cover (3.331Mb)
      Fullteks (3.331Mb)
      Lampiran (3.331Mb)
      Date
      2021
      Author
      Mardani, Dwi Andri
      Ahmad, Usman
      Metadata
      Show full item record
      Abstract
      Tomat cherry biasanya dijual dalam kemasan retail dengan ukuran dan warna yang hampir seragam, oleh karena itu perlu digolongkan ke dalam kelas mutu tertentu sebelum dikemas. Salah satu parameter mutu yang sering digunakan karena mudah adalah tingkat kematangan buah yang diwakili oleh warna kulit buah, namun pekerjaan ini dalam waktu lama cukup melelahkan pekerja sehingga dapat menurunkan konsistensi pemutuan. Metode pengolahan citra dan machine learning dapat digunakan untuk melakukan klasifikasi mutu tomat cherry untuk menggantikan pekerjaan manual. Tujuan dari penelitian ini adalah mempelajari mengolah informasi warna pada tomat cherry menggunakan pengolahan citra serta membangun, menguji, dan menentukan akurasi model klasifikasi mutu tomat cherry menggunakan machine learning. Citra tomat diambil dari berbagai sisi yaitu sisi atas, bawah, kanan dan kiri. Fitur yang diekstrak dan digunakan dalam pembuatan model adalah color moment dan algoritma machine learning yang digunakan adalah Support Vector Machine (SVM). Model dengan akurasi tertinggi didapatkan bila menggunakan data citra buah tomat dari sisi bawah dan kanan yaitu sebesar 98,81%. Sedangkan, model dengan akurasi terendah didapatkan menggunakan data citra buah tomat dari sisi atas yaitu sebesar 96,43%.
       
      Cherry tomatoes are usually sold in retail packaging with almost uniform sizes and colors, therefore they need to be classified into a certain quality class before being packaged. One of the quality parameters that is often used is fruit ripeness level indicated by the color of the fruit skin, but working for a long time is quite tiring for workers so that it can reduce consistency in grading. Image processing methods and machine learning can be used to classify the quality of cherry tomatoes to replace manual work. The purpose of this research is to study the color information on cherry tomatoes using image processing and to build, test, and determine the accuracy of model for the quality classification of cherry tomatoes using machine learning. Tomato images are taken from various sides, namely the top, bottom, right and left sides. The features extracted and used in the model development are color moments and the machine learning algorithm used is Support Vector Machine (SVM). The model with the highest accuracy is obtained when using tomato image data form the bottom and right sides, which was 98.81%. Meanwhile, the model with the lowest accuracy was obtained using tomato image data from the top side, which was 96.43%.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/108272
      Collections
      • UT - Agricultural and Biosystem Engineering [3593]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository