View Item 
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      •   IPB Repository
      • Dissertations and Theses
      • Master Theses
      • MT - Mathematics and Natural Science
      • View Item
      JavaScript is disabled for your browser. Some features of this site may not work without it.

      Analisis Model Stokastik CTMC dengan Karantina pada Penyebaran Penyakit Menular

      Thumbnail
      View/Open
      Cover (510.4Kb)
      Fullteks (1003.Kb)
      Lampiran (287.0Kb)
      Date
      2021
      Author
      Fatimatuzzahroh
      Sumarno, Hadi
      Sianturi, Paian
      Metadata
      Show full item record
      Abstract
      Model epidemik SIQRS yang dikaji pada penelitian ini digunakan untuk menganalisis karakteristik dari penyebaran penyakit menular, seperti penyakit tuberkulosis. Penelitian ini bertujuan untuk (1) memodifikasi model SIQR Cao et al. 2019 menjadi model SIQRS, (2) menentukan peluang transisi, peluang wabah dan nilai harapan waktu bebas penyakit dengan pendekatan CTMC, (3) melakukan simulasi pengaruh peningkatan lama waktu penyembuhan, pengaruh peningkatan jumlah individu terinfeksi, dan pengaruh peningkatan jumlah individu dikarantina, sehingga diperoleh sebaran waktu bebas penyakit serta pengaruh karantina terhadap nilai harapan waktu bebas penyakit. Data yang digunakan untuk simulasi yaitu data tentang asumsi kondisi penyakit tuberkulosis secara umum. Peluang transisi pada penelitian ini diperoleh melalui pendekatan stokastik CTMC dengan dua cara. Pendekatan CTMC cara pertama yaitu disumsikan terdapat tiga peubah acak dan satu peubah yang dapat ditentukan nilainya secara pasti. Pendekatan CTMC cara kedua yaitu diasumsikan terdapat empat peubah acak sehingga total populasi bernilai acak. Pendekatan stokastik CTMC juga dapat digunakan untuk menentukan peluang wabah melalui proses bercabang. Berdasarkan proses bercabang, wabah dapat terjadi ketika nilai harapan jumlah individu terinfeksi (m) > 1 lalu sebaliknya wabah hilang dari populasi ketika nilai harapan jumlah individu terinfeksi (m) ≤ 1. Nilai harapan waktu tidak terjadi wabah (nilai harapan waktu bebas penyakit) sulit diperoleh melalui matriks generator Q karena populasi yang disimulasikan cukup besar, sehingga pada penelitian ini nilai harapan waktu bebas penyakit ditentukan secara numerik. Nilai harapan waktu bebas penyakit pada penelitian ini ditentukan melalui simulasi komputer yang diulang sebanyak 100 kali pada masing-masing parameter laju karantina untuk memperoleh sebaran peluangnya, selanjutnya dapat ditentukan nilai harapannya. Berdasarkan hasil simulasi pada skenario pertama dapat disimpulkan bahwa peningkatan lama waktu penyembuhan, menyebabkan peningkatan pada bilangan reproduksi dasar (R0) dan nilai harapan jumlah individu terinfeksi (m). Pada simulasi ini peningkatan nilai R0 dan m tidak membuat nilai wabah terjadi dalam jangka panjang karena nilai R0<1 , m <1 dan jumlah individu terinfeksi menurun, walaupun membutuhkan waktu yang cukup lama agar wabah tersebut dapat hilang dari populasi. Berdasarkan scenario kedua didapatkan bahwa peningkatan jumlah individu terinfeksi berpengaruh terhadap kenaikan bilangan reproduksi dasar (R0) dan nilai harapan jumlah individu terinfeksi (m). Hasil simulasi menunjukkan bahwa jumlah individu terinfeksi semakin berfluktuasi. Peningkatan bilangan reproduksi dasar (R0) >1 dan nilai harapan jumlah individu terinfeksi (m) > 1 menyebabkan terjadi peningkatan pada peluang wabah. Nilai R0, m, dan peluang wabah diperoleh secara analitik. Peningkatan pada peluang wabah menunjukkan bahwa waktu terjadinya endemik atau penyakit semakin lama sehingga penyakit hilang lebih lama dari suatu populasi. Berbeda halnya pada skenario ketiga didapatkan bahwa peningkatan jumlah individu dikarantina dapat menurunkan bilangan reproduksi dasar (R0) dan nilai harapan jumlah individu terinfeksi (m). Berdasarkan laju karantina yang digunakan yaitu 0,1; 0,2; 0,4; 0,6; 0,8; dan 1 per tahun menghasilkan nilai harapan waktu bebas penyakit berturut-turut 35,34; 17,86; 9,22; 5,261; 4,277; dan 3,284 tahun. Besarnya laju karantina yang ditingkatkan menyebabkan nilai harapan waktu bebas penyakit semakin kecil, sehingga dapat menurunkan waktu terjadinya wabah. Penyakit dapat hilang lebih cepat dari suatu populasi yang mengakibatkan tidak terjadi wabah dalam jangka panjang.
       
      An epidemic model namely SIQRS model developed in this study was intended to analyse the spreading characteristics of infectious diseases i.e. tuberculosis. The aims of this study were (1) to modify the Cao et al. 2019’s model known as SIQR model into SIQRS model (2) to determine: transitional probabilities, disease outbreak probability, expected time until disease-free using CTMC (Continuous Time Markov Chain) approach, (3) to simulate the effect of increasing the healing time, the number of infected individuals, and the number of quarantined individuals, which in turn can be determined the distribution of diseasefree time and the outcome of quarantine on the expected time until disease-free. The data was used in the simulation were data about the general assumptions of tuberculosis condition. In this study, the transition opportunities were obtained through the stochastic CTMC approach in two ways. The first way of CTMC approach was assumed there were three random variables and one variable whose value can be determined certainty. The second way of CTMC approach was assumed there were four random variables so the number of populations were random. The stochastic CTMC approach also be used to determine the probability of outbreak through a branching process. Based on branching process, an outbreak could occur when the expected number of infected individuals (m) > 1 otherwise an outbreak should disappear from population when the number of infected individuals (m) ≤ 1. The expected time when there was no outbreak (expected time of disease-free) was difficult to obtain through generator matrix Q because the simulated population was large, so in this study the expected time of disease-free was determined numerically. The expected time of disease-free was determined by computer simulations were replicated for 100 times on each quarantine rate to get the distribution of the probability of disease-free then the expected time of disease-free can be obtained. Based on first scenario, it could be concluded that increasing the healing time cause increased the basic reproduction number (R0) and the expected number of infected individuals (m). In this simulation the increased value of R0 dan m didn’t make the outbreak in log-term because the value of R0 <1, m <1, and the number of infected individuals decreased although it took long time for the outbreak disappeared from population. Based on second scenario, the increasing number of infected individuals also affected to increase the basic reproduction number (R0) and the expected number of infected individuals (m). The simulation result showed that the number of infected individuals were fluctuated. An increase in the basic reproduction number (R0) > 1 and the expected number of infected individuals (m) > 1 caused an increase in the probability of an outbreak. The value of R0, m, and the outbreak probabilities were determined analytically. An increase in the probability of an outbreak indicated that the time of disease getting longer. Thus the diseases disappeared in long-term from a population. It was different in the third scenario, the increasing number of quarantined individuals decreased the basic reproduction number (R0) and the expected number of infected individuals (m). Based on the quarantine rate parameters used, which were 0,1; 0,2; 0,4; 0,6; 0,8; and 1 per year, respectively produced an expectation time of disease-free were 35,34; 17,86; 9,22; 5,261; 4,277; and 3,284 years. An increasing of quarantine rate decreased the expected time until disease-free. It also made the diseases disappear rapidly from the population, thus there was not outbreak in the long-term.
       
      URI
      http://repository.ipb.ac.id/handle/123456789/106061
      Collections
      • MT - Mathematics and Natural Science [4149]

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository
        

       

      Browse

      All of IPB RepositoryCollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

      My Account

      Login

      Application

      google store

      Copyright © 2020 Library of IPB University
      All rights reserved
      Contact Us | Send Feedback
      Indonesia DSpace Group 
      IPB University Scientific Repository
      UIN Syarif Hidayatullah Institutional Repository
      Universitas Jember Digital Repository