Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/81104
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEstuningsih, Rachmawati Dwi-
dc.contributor.authorGuritman, Sugi-
dc.contributor.authorSilalahi, Bib P.-
dc.date.accessioned2016-06-30T03:36:08Z-
dc.date.available2016-06-30T03:36:08Z-
dc.date.issued2014-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/81104-
dc.description.abstractHash function based on lattices believed to have a strong security proof based on the worst-case hardness, In 2008. Lyubashevsky et al. proposed WSIFFT, aa hash function that corresponds to a simple expresion over modular polynomial ring R = Zp[alfa]/(alfa) n + 1). We construct HLI, a hash function that corresponds to a simple expression over modular polynomial ring Rf,p = Zp[x[/f(x). We choose a monic and irreducible polynomial f(x) = (x)n - x -1 to obtain the hash function is collision resistant. Thus, the number of operatins in hash function is collision resistant. Thus, the number of operations in hash function is calculated and compared with SWIFFT. Thus, the number of operations in hash function is calculated and compared with SWIFFT.id
dc.language.isoenid
dc.publisherPushpa Publishing House, Allahabad, Indiaid
dc.relation.ispartofseriesVolume 86, Number 1;Pages 23-36-
dc.titleAlgorithm construction of HLI hash functionid
dc.typeArticleid
Appears in Collections:Faculty of Mathematics and Natural Sciences

Files in This Item:
File SizeFormat 
14-FJMS-08601-023.pdf95.47 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.