Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/81043
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSitanggang, Imas Sukaesih-
dc.contributor.authorHusin, Nor Azura-
dc.contributor.authorAgustina, Anita-
dc.contributor.authorMahmoodian, Naghmeh-
dc.date.accessioned2016-06-13T02:57:12Z-
dc.date.available2016-06-13T02:57:12Z-
dc.date.issued2010-
dc.identifier.isbn978-1-4244-6716-7-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/81043-
dc.description.abstractApplication of data mining techniques in library data results interesting and useful patterns that can be used to improve services in university libraries. This paper presents results of the work in applying the sequential pattern mining algorithm namely AprioriAll on a library transaction dataset. Frequent sequential patterns containing book sequences borrowed by students are generated for minimum supports 0.3, 0.2, 0.15 and 0.1. These patterns can help library in providing book recommendation to students, conducting book procurement based on readers need, as well as managing books layout.id
dc.language.isoenid
dc.publisherUniversiti Teknologi PETRONASid
dc.titleSequential Pattern Mining on Library Transaction Dataid
dc.typeArticleid
dc.subject.keywordSequential Pattern Miningid
dc.subject.keywordAprioriAllid
dc.subject.keywordLibrary Transaction Dataid
Appears in Collections:Computer Science

Files in This Item:
File SizeFormat 
05561316_Sequential pattern mining on library transaction data.pdf263.78 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.