Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/79369Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kusnanto, Ali | |
| dc.contributor.author | Edisusanto, Bambang | |
| dc.contributor.author | Bakhtiar, Toni | |
| dc.date.accessioned | 2016-03-16T06:46:30Z | |
| dc.date.available | 2016-03-16T06:46:30Z | |
| dc.date.issued | 2014 | |
| dc.identifier.uri | http://repository.ipb.ac.id/handle/123456789/79369 | |
| dc.description.abstract | This paper studies an optimization problem, i.e., the optimal tracking error control problem, on an inverted pendulum model with elevated track. We characerize the minimum tracking error in term of pendulum's parameters. Prticularly, we derive the close-form expression for the pendulum length which gives minimum error. It is shown that the minimum error can always be accomplised as long as the ratio between the mass of the pendulum and that of the cart satisfies a certain constancy, regardless the type of material we use for the pendulum. | id |
| dc.language.iso | en | id |
| dc.publisher | other | id |
| dc.publisher | Pushpa Publishing House | id |
| dc.publisher | other | id |
| dc.relation.ispartofseries | Volume 85;Number 1 | |
| dc.title | Pendulum System with Elevated track: Length of Pendulum With Minimum Tracking Error | id |
| dc.type | Article | id |
| Appears in Collections: | Faculty of Mathematics and Natural Sciences | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| FJMSMar2014_35_45.pdf | 132.85 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.