Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/76445
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPermana, lnggih
dc.contributor.authorBuono, Agus
dc.contributor.authorSilalahi, Bib Paruhum
dc.date.accessioned2015-10-07T03:40:52Z
dc.date.available2015-10-07T03:40:52Z
dc.date.issued2014
dc.identifier.issn2356 542X-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/76445
dc.description.abstractThis study focused on noise cancelling using Least Muns Square (Ll\IS) for robust speaker identifiration. Noise ranrrlling ran be used to oHrcome sptaker idrntification diffirulties in recognizing noisy voicrs. This study used the LMS on data preprocessing. Based on experimental results, it can be concluded that speaker identification using LMS at data preprocessing produces higher arcuracy than without using LMS. The highest accurary of data that using the LMS is 84.64•/e whereas the data without using the LMS only 2.11%.en
dc.language.isoid
dc.publisherFaculty of Science and Technology, UIN Sultan Syarif Kasim Riau.
dc.relation.ispartofseriesVolume I. October 2014;-
dc.subject.ddcleast means squareen
dc.subject.ddcnoise cancellingen
dc.subject.ddcspeaktr identificationen
dc.titleNoise Cancelling for Robust Speaker Identification Using Least Mean Squareen
Appears in Collections:Proceedings

Files in This Item:
File SizeFormat 
PRO2014ipe.pdf1.92 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.