Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/76131
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAngraini, Yenni
dc.contributor.advisorKusumaningrum, Dian
dc.contributor.authorHasanah, Yulianti
dc.date.accessioned2015-08-21T06:25:18Z
dc.date.available2015-08-21T06:25:18Z
dc.date.issued2015
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/76131
dc.description.abstractFloods are natural events that have erratic pattern. The time when floods occure are detectable, when we are able to forecast rainfall. The amount of rainfall is influenced by several factors, including temperature and humidity. Rainfall, temperature, and humidity are time series data that have are not independent. Forecasting for time series data can be done by using ARIMA model. Forecasting result from ARIMA models are not satisfying because it is not close to the actual data, which was also showed by its MAPE value of 37.01%. Hence the transfer function model was applied to forecast rainfall as the output variable along with temperature and humuidity factor as the input variable. The result from transfer function model used for short run forecasting (1 week) was quite good which can be seen by its MAPE value of 5.28%. Although transfer function model has a lower MAPE value compared to ARIMA model, transfer function model is not good enough to be used on long-term (1 month) rainfall forecasting, which is showed by its MAPE value of 31.68% and it could not detect flood occurence well. Based on those MAPE values it can be concluded that the transfer function model is still better than ARIMA model.en
dc.language.isoid
dc.subject.ddcBogor-Jawa Baraten
dc.subject.ddc2014en
dc.subject.ddcStatistical modelsen
dc.subject.ddcStatisticsen
dc.titlePemodelan Curah Hujan dengan Model Fungsi Transfer Input Gandaen
dc.subject.keywordBogor Agricultural University (IPB)en
dc.subject.keywordtransfer function modelen
dc.subject.keywordrainfallen
dc.subject.keywordARIMA modeen
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
G15yha.pdf
  Restricted Access
full text1.63 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.