Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/75970
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHerdiyeni, Yeni
dc.contributor.authorAzizah, Nurul
dc.contributor.authorHeryanto, Rudi
dc.date.accessioned2015-08-10T03:31:37Z
dc.date.available2015-08-10T03:31:37Z
dc.date.issued2014
dc.identifier.isbn978-1-4799-6857-2-
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/75970
dc.description.abstractThis research proposes a new method to estimate the spectral reflectance for Sambiloto (Andrograp/1is paniculata) leaf age prediction based on leaf digital image. Sambiloto is a medicinal plant containing andrographolide compounds. Wiener estimation is used to estimate spectral reflectance based on RGB values and probabilistic neural networks (PNN) is used to classify plant age. Analyses of the result showed that the number of terms in the Wiener estimation affects on the results. According to experimental result, ten terms gave the best result for spectral reflectance estimation and accuracy of leaf age prediction is 73.61 %. This prediction can be used as quality marker of medicinal plants.en
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofseries978-1-4799-6857-2;-
dc.titleSpectral Reflectance Estimation Based On Digital Leaf Image Using Wiener Estimation for Sambiloto Leaf Age Predictionen
dc.typeArticleen
dc.subject.keywordPolynomialen
dc.subject.keywordProbabilistic Neural Networken
dc.subject.keywordSpectral Reflectance Estimationen
dc.subject.keywordSambilotoen
dc.subject.keywordWiener Estimationen
Appears in Collections:Proceedings

Files in This Item:
File Description SizeFormat 
PRO2014yhe.pdfFulltext5.15 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.