Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/70454
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSoleh, Agus M
dc.contributor.advisorSartono, Bagus
dc.contributor.authorPuspita, Nanda
dc.date.accessioned2014-11-26T06:53:32Z
dc.date.available2014-11-26T06:53:32Z
dc.date.issued2014
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/70454
dc.description.abstractLogistic regression is commonly used in research to assess the relationship of proportion with one or many variables. In logistic regression, when variance of a binomial response variable is larger than it should be (overdispersion), either the model or the parameter estimation needs to be modified. An alternative that can be applied is beta-binomial regression. Parameter estimation for logistic and betabinomial regression generally done by maximizing the likelihood function through the Iteratively Reweighted Reweighted Least Square (IRLS) algorithm. However, this algorithm requires much auxiliary information to work properly such as initial domain and differential. This study is purposed to examine the application of genetic algorithm as an alternative method for estimating logistic and beta-binomial regression parameters. The result shows that genetic algorithm can generate solutions that are close to IRLS even with better log-likelihood value.en
dc.language.isoid
dc.subject.ddc2014en
dc.subject.ddcAlgorithm yen
dc.subject.ddcStatisticsen
dc.titlePenerapan Algoritma Genetik sebagai Metode Alternatif Pendugaan Parameter Regresi Logistik dan Beta-binomialen
dc.subject.keywordParameteren
dc.subject.keywordLogisticen
dc.subject.keywordGenetic Algorithmen
dc.subject.keywordBeta-binomialen
Appears in Collections:UT - Statistics and Data Sciences

Files in This Item:
File Description SizeFormat 
G14npu.pdf
  Restricted Access
full text633.27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.