Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/67958
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSiswadi
dc.contributor.advisorArdana, N. K. Kutha
dc.contributor.authorYuni, Evy Muflikhah
dc.date.accessioned2014-02-19T02:11:08Z
dc.date.available2014-02-19T02:11:08Z
dc.date.issued2013
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/67958
dc.description.abstractThe classification of a new object into a group is expected to be solved with minimum error. Fisher discriminant analysis, Mahalanobis distance (either with separate or pooled covariance matrix), and biplot analysis are used for classification. The data being used are the Iris and the generated data for simulation. Mahalanobis distance with separate covariance matrix gives the minimum classification error. However, if the classification of a new object into a group is not only based on the minimum classification error but also based on the visualization of the data, Fisher discriminant analysis gives the best result.en
dc.language.isoid
dc.titleKlasifikasi dengan Analisis Diskriminan Fisher, Jarak Mahalanobis, dan Analisis Biploten
dc.subject.keywordclassification erroren
dc.subject.keywordMahalanobis distanceen
dc.subject.keywordbiploten
dc.subject.keywordFisher discriminant analysisen
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
G13emy1.pdf
  Restricted Access
full text1.24 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.