Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/62189
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAdrianto, Hari Agung
dc.contributor.advisorMulyono, Sidik
dc.contributor.authorPuspitasari, Yulianti
dc.date.accessioned2013-04-15T01:45:24Z
dc.date.available2013-04-15T01:45:24Z
dc.date.issued2010
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/62189
dc.description.abstractHyperspectral is a new technology in remote sensing which exploits hundred of bands. Pusat Teknologi Inventarisasi Sumber Daya Alam Badan Pengkajian dan Penerapan Teknologi (PTISDA BPPT) applies hyperspectral in agriculture for yearly yield prediction. In this research, Leaf Area Index (LAI), number of chlorophyll (SPAD), and yield paddy yearly has been predicted with data hyperspectral using partial least square regression (PLSR) algorithm. Region used are Indramayu and Subang; the growth periods of paddy are vegetative, reproductive and ripening, while the heights of the spectral acquisition are 10 cm, 50 cm, and Hymap (2000 m). The data is owned PTISDA BPPT in cooperation with ERSDAC Japan. This research predicted R2 maximum for LAI 0.9500, SPAD 0.5262, and yield 0.4921. By using PLSR, LAI values can be predicted quite well, but not for the SPAD values and yield. This could be due to measurement error in the instrument of SPAD, while errors of yield are probably due to using a small area to represent a large area.en
dc.subjectpaddyen
dc.subjectleaf area index (LAI)en
dc.subjectspad, yielden
dc.subjecthyperspectralen
dc.subjectpartial least square regression (PLSR)en
dc.titleLAI, SPAD, and Yield of Paddy Rice Prediction from Data Hyperspectral Using Partial Least Square Regression (PLSR) Algorithmen
dc.titlePrediksi LAI, SPAD, dan Yield Padi Menggunakan Data Hyperspectral dengan Algoritme Partial Least Square Regression (PLSR)
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
G10ypu.pdf
  Restricted Access
Fulltext1.16 MBAdobe PDFView/Open
Abstract.pdf
  Restricted Access
Abstract280.86 kBAdobe PDFView/Open
BAB I Pendahuluan.pdf
  Restricted Access
BAB I369.26 kBAdobe PDFView/Open
BAB II Tinjauan Pustaka.pdf
  Restricted Access
BAB II599.34 kBAdobe PDFView/Open
BAB III Metode Penelitian.pdf
  Restricted Access
BAB III440.6 kBAdobe PDFView/Open
BAB IV Hasil dan Pembahasan.pdf
  Restricted Access
BAB IV370.85 kBAdobe PDFView/Open
BAB V Kesimpulan dan Saran.pdf
  Restricted Access
BAB V340.94 kBAdobe PDFView/Open
Cover.pdf
  Restricted Access
Cover279.12 kBAdobe PDFView/Open
Daftar Pustaka.pdf
  Restricted Access
Daftar Pustaka326.74 kBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran555.72 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.