Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/62188
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorAdrianto, Hari Agung
dc.contributor.advisorNugroho, Anto Satriyo
dc.contributor.authorYohan
dc.date.accessioned2013-04-15T01:41:47Z
dc.date.available2013-04-15T01:41:47Z
dc.date.issued2010
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/62188
dc.description.abstractHyperspectral is a new technology in remote sensing which exploits hundred of bands. Pusat Teknologi Inventarisasi Sumber Daya Alam Badan Pengkajian dan Penerapan Teknologi (PTISDA BPPT) applies hyperspectral in agriculture for yearly yield prediction. In this research, Leaf Area Index (LAI), number of chlorophyl (SPAD), and yearly yield has been predicted with hyperspectral data using support vector machine (SVM) method. SVM currently aroused many attentions due to its robustness in dealing with data with high dimensionality, including hyperspectral data. In principle, SVM works as a binary classifier to find the best separating hyperplane in the feature space. By modifying its loss function, SVM can be applied to regression problem in hyperspectral and Hymap hyperspectral remotely sensed data Region used are Indramayu and Subang; the growth period’s of paddy are vegetative, reproductive, and ripening, while the height’s of the spectral acquisition are 10 cm, 50 cm, and Hymap (2000 m). The data is owned PTISDA BPPT in cooperation with ERSDAC Japan. This research got prediction R2 maximum for LAI 0.96, SPAD 0.55, and yield 0.485. By using SVM, LAI values can be predicted quite well, but not for the SPAD values.This could be due to measurement error in the instrument of SPAD, while error’s of yield are probably due to measurement which using the example of a small area to represent a large area.en
dc.subjecthyperspectralen
dc.subjecthymapen
dc.subjectLeaf Area Index (LAI)en
dc.subjectSPADen
dc.subjectyielden
dc.subjectSupport Vector Machineen
dc.subjectpaddyen
dc.titleCrop Variable Value of Paddy Rice Prediction in Hyperspectral Data Using Support Vector Machine Methoden
dc.titlePrediksi Nilai Crop Variable Tanaman Padi pada Data Hyperspectral Menggunakan Metode Support Vector Machine.
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
G10yoh.pdf
  Restricted Access
Fulltext1.66 MBAdobe PDFView/Open
Abstract.pdf
  Restricted Access
Abstract417.18 kBAdobe PDFView/Open
BAB I Pendahuluan.pdf
  Restricted Access
BAB I510.19 kBAdobe PDFView/Open
BAB II Tinjauan Pustaka.pdf
  Restricted Access
BAB II846.08 kBAdobe PDFView/Open
BAB III Metode Penelitian.pdf
  Restricted Access
BAB III814.87 kBAdobe PDFView/Open
BAB IV Hasil dan Pembahasan.pdf
  Restricted Access
BAB IV676.76 kBAdobe PDFView/Open
BAB V Kesimpulan dan Saran.pdf
  Restricted Access
BAB V458.2 kBAdobe PDFView/Open
Cover.pdf
  Restricted Access
Cover390.44 kBAdobe PDFView/Open
Daftar Pustaka.pdf
  Restricted Access
Daftar Pustaka458.2 kBAdobe PDFView/Open
Lampiran.pdf
  Restricted Access
Lampiran720.21 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.