Please use this identifier to cite or link to this item:
http://repository.ipb.ac.id/handle/123456789/55685| Title: | Penggunaan Metode Iterasi Variasi untuk Menyelesaikan Masalah Osilasi Berpasangan The Use of Iterated Variations Method to Solve Problems of Paired Oscillation. |
| Authors: | Jaharuddin Kusnanto,Ali Susilawati, Santi |
| Keywords: | Bogor Agricultural University (IPB) Paired oscillation Volterra’s integro differential equation Iterated Variations Method |
| Issue Date: | 2012 |
| Abstract: | Problems of paired oscillation are oscillation problems that are performed by two springs simultaneously. A mathematical model on the problem is given in the form of Volterra’s integro first order differential equation system. The system can be expressed as deviation of both springs during the oscillation, where its coefficient depends on the spring constant and the mass of both objects. In the model formulation, it is assumed that the springs are in normal mode. The solution of the model is obtained by using iterated variations method. Based on the method, a correction function is formed in the form of iterating formula, with an arbitrary initial approximation. Using software of mathematic, approximated solutions for problems of paired oscillations are sketched graphically. Based on the graphs, it can be observed that approximated solution of the left spring has an exact value on the interval [0,0.4], while the approximated solution of the right spring has an exact value on the interval [0,0.6]. This is obtained at the 57 iteration Masalah osilasi berpasangan merupakan suatu masalah osilasi yang dilakukan oleh dua pegas sekaligus secara bersamaan. Model matematika pada masalah osilasi berpasangan berupa suatu sistem persamaan diferensial integral Volterra orde satu. Sistem persamaan diferensial integral Volterra orde satu yang diperoleh dinyatakan dalam variabel simpangan kedua pegas selama osilasi dengan koefisien bergantung pada konstanta pegas dan massa kedua benda. Penurunan model matematika pada masalah osilasi berpasangan menggunakan asumsi bahwa pegas berupa mode normal. Penyelesaian masalah osilasi berpasangan diperoleh dengan menggunakan metode iterasi variasi. Pada metode iterasi variasi dibentuk suatu fungsi koreksi yang berupa formula iterasi, dengan hampiran awal diberikan sembarang. Dengan menggunakan bantuan software berbasis matematika, diperoleh grafik hampiran penyelesaian untuk masalah osilasi berpasangan. Berdasarkan grafik, hampiran penyelesaian untuk pegas kiri mendekati penyelesaian sebenarnya pada selang [0,0.4], sedangkan pada pegas kanan hampiran penyelesaian mendekati penyelesaian sebenarnya pada selang [0,0.6]. Hal ini diperoleh dari iterasi yang dilakukan hingga iterasi ke-57. |
| URI: | http://repository.ipb.ac.id/handle/123456789/55685 |
| Appears in Collections: | UT - Mathematics |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| G12ssu1.pdf Restricted Access | Full text | 604.43 kB | Adobe PDF | View/Open |
| G12ssu_Abstrak.pdf Restricted Access | Abstract | 296.78 kB | Adobe PDF | View/Open |
| G12ssu_BAB I Pendahuluan.pdf Restricted Access | BAB I | 288.22 kB | Adobe PDF | View/Open |
| G12ssu_BAB II Landasan Teori.pdf Restricted Access | BAB II | 395.06 kB | Adobe PDF | View/Open |
| G12ssu_BAB III Pembahasan.pdf Restricted Access | BAB III | 404.14 kB | Adobe PDF | View/Open |
| G12ssu_BAB IV Simpulan.pdf Restricted Access | BAB IV | 317.67 kB | Adobe PDF | View/Open |
| G12ssu_Cover.pdf Restricted Access | Cover | 354.7 kB | Adobe PDF | View/Open |
| G12ssu_Daftar Pustaka.pdf Restricted Access | daftar pustaka | 283.31 kB | Adobe PDF | View/Open |
| G12ssu_Lampiran.pdf Restricted Access | Lampiran | 341.62 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.