Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/55685
Title: Penggunaan Metode Iterasi Variasi untuk Menyelesaikan Masalah Osilasi Berpasangan
The Use of Iterated Variations Method to Solve Problems of Paired Oscillation.
Authors: Jaharuddin
Kusnanto,Ali
Susilawati, Santi
Keywords: Bogor Agricultural University (IPB)
Paired oscillation
Volterra’s integro differential equation
Iterated Variations Method
Issue Date: 2012
Abstract: Problems of paired oscillation are oscillation problems that are performed by two springs simultaneously. A mathematical model on the problem is given in the form of Volterra’s integro first order differential equation system. The system can be expressed as deviation of both springs during the oscillation, where its coefficient depends on the spring constant and the mass of both objects. In the model formulation, it is assumed that the springs are in normal mode. The solution of the model is obtained by using iterated variations method. Based on the method, a correction function is formed in the form of iterating formula, with an arbitrary initial approximation. Using software of mathematic, approximated solutions for problems of paired oscillations are sketched graphically. Based on the graphs, it can be observed that approximated solution of the left spring has an exact value on the interval [0,0.4], while the approximated solution of the right spring has an exact value on the interval [0,0.6]. This is obtained at the 57 iteration
Masalah osilasi berpasangan merupakan suatu masalah osilasi yang dilakukan oleh dua pegas sekaligus secara bersamaan. Model matematika pada masalah osilasi berpasangan berupa suatu sistem persamaan diferensial integral Volterra orde satu. Sistem persamaan diferensial integral Volterra orde satu yang diperoleh dinyatakan dalam variabel simpangan kedua pegas selama osilasi dengan koefisien bergantung pada konstanta pegas dan massa kedua benda. Penurunan model matematika pada masalah osilasi berpasangan menggunakan asumsi bahwa pegas berupa mode normal. Penyelesaian masalah osilasi berpasangan diperoleh dengan menggunakan metode iterasi variasi. Pada metode iterasi variasi dibentuk suatu fungsi koreksi yang berupa formula iterasi, dengan hampiran awal diberikan sembarang. Dengan menggunakan bantuan software berbasis matematika, diperoleh grafik hampiran penyelesaian untuk masalah osilasi berpasangan. Berdasarkan grafik, hampiran penyelesaian untuk pegas kiri mendekati penyelesaian sebenarnya pada selang [0,0.4], sedangkan pada pegas kanan hampiran penyelesaian mendekati penyelesaian sebenarnya pada selang [0,0.6]. Hal ini diperoleh dari iterasi yang dilakukan hingga iterasi ke-57.
URI: http://repository.ipb.ac.id/handle/123456789/55685
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
G12ssu1.pdf
  Restricted Access
Full text604.43 kBAdobe PDFView/Open
G12ssu_Abstrak.pdf
  Restricted Access
Abstract296.78 kBAdobe PDFView/Open
G12ssu_BAB I Pendahuluan.pdf
  Restricted Access
BAB I288.22 kBAdobe PDFView/Open
G12ssu_BAB II Landasan Teori.pdf
  Restricted Access
BAB II395.06 kBAdobe PDFView/Open
G12ssu_BAB III Pembahasan.pdf
  Restricted Access
BAB III404.14 kBAdobe PDFView/Open
G12ssu_BAB IV Simpulan.pdf
  Restricted Access
BAB IV317.67 kBAdobe PDFView/Open
G12ssu_Cover.pdf
  Restricted Access
Cover354.7 kBAdobe PDFView/Open
G12ssu_Daftar Pustaka.pdf
  Restricted Access
daftar pustaka283.31 kBAdobe PDFView/Open
G12ssu_Lampiran.pdf
  Restricted Access
Lampiran341.62 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.