Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/52536
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHerdiyeni,Yeni
dc.contributor.authorRisnuraini, Fanny
dc.date.accessioned2011-12-15T07:18:13Z
dc.date.available2011-12-15T07:18:13Z
dc.date.issued2011
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/52536
dc.description.abstractPlants identification automatically is still a uses for recognizing various kinds of house plant species and medicinal plants. This research uses a method Multi-Block Local Binary Pattern (MBLBP) descriptor to extract texture feature and Probabilistic Neural Network (PNN) classifying for identifying a house plants and medicinal plants automatically. There are three kinds of MBLBP descriptor used in this research, i.e., , , , , and , . For training and testing, this research uses database of 1440 medicinal plant leaf images and 300 tree images belonging to 30 different types and obtained from Biofarmaka IPB, Cikabayan Farm, Green house Center Ex- Situ Conservation of Medicinal Plant Indonesia Tropical Forest, and Gunung Leutik. The experimental result shows that the concatination of , has the best accuracy in identifying house plants with an accuracy of 77.78%. It shows that MBLBP method is better than LBP method in identifying house plants based on the increase accuracy by 4.45%.en
dc.subjectplant extractionen
dc.subjectmulti-block local binary patternen
dc.subjecttexture featureen
dc.subjectprobalistic neural networken
dc.subjectBogor Agricultural University (IPB)en
dc.titleEkstraksi Tekstur Citra Menggunakan Gaussian dan Multi-Block Local Binary Pattern untuk Identifikasi Tumbuhan Obaten
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
G11fri.pdf
  Restricted Access
Full text3.03 MBAdobe PDFView/Open
Abstract_ G11fri.pdf
  Restricted Access
Abstract325.68 kBAdobe PDFView/Open
BAB I Pendahuluan_ G11fri.pdf
  Restricted Access
BAB I318.59 kBAdobe PDFView/Open
BAB II Tinjauan Pustaka_ G11fri.pdf
  Restricted Access
BAB II535.23 kBAdobe PDFView/Open
BAB III Metode Penelitian_ G11fri.pdf
  Restricted Access
BAB III505.75 kBAdobe PDFView/Open
BAB IV Hasil dan Pembahasan_ G11fri.pdf
  Restricted Access
BAB IV1.07 MBAdobe PDFView/Open
BAB V Simpulan_ G11fri.pdf
  Restricted Access
BAB V440.53 kBAdobe PDFView/Open
Cover_G11fri.pdf
  Restricted Access
Cover310.76 kBAdobe PDFView/Open
Daftar Pustaka_ G11fri.pdf
  Restricted Access
Daftar Pustaka316.23 kBAdobe PDFView/Open
Lampiran_ G11fri.pdf
  Restricted Access
Lampiran1.98 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.