Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/51708
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRidha, Ahmad
dc.contributor.authorChairullah, Roni Novettio
dc.date.accessioned2011-11-09T06:41:56Z
dc.date.available2011-11-09T06:41:56Z
dc.date.issued2011
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/51708
dc.description.abstractDynamic Classifier Selection with Local Accuracy (DCS-LA) is a document classification method that combines several classification methods and k-NN. In this study, we implemented the DCS-LA with Inverse Distance Weighting for documents writen in Bahasa Indonesia as well as comparing between the DCS-LA with Inverse Distance Weighting and DCS-LA without Inverse Distance Weighting. We used four classifiers: Rocchio, Naïve Bayes, Bernoulli, and Poisson Naïve Bayes as classifiers in the DCS-LA. For the data, we used agriculture documents consisting of 174 training documents and 75 test documents, and news documents consisting of 500 training documents and 250 test documents. This method can yield an accuracy of 66% and 96% for agriculture documents and news documents, respectively. Without Inverse Distance Weighting, DCS-LA only yields an accuracy of 56% and 86% for agriculture documents and news documents, respectively. Therefore, Inverse Distance Weighting can improve the accuracy of the DCS-LA in classifying text documents in Bahasa Indonesia.en
dc.publisherIPB (Bogor Agricultural University)
dc.subjectInverse Distance Weightingen
dc.subjectPoisson Naïve Bayesen
dc.subjectBernoullien
dc.subjectNaïve Bayesen
dc.subjectRocchioen
dc.subjectDCS-LAen
dc.subjectDocument classificationen
dc.subjectBogor Agricultural University (IPB)en
dc.titleClassification of Documents in Bahasa Indonesia using DCS-LA with Inverse Distance Weightingen
dc.titleKlasifikasi Dokumen Bahasa Indonesia Menggunakan Metode DCS-LA dengan Inverse Distance Weightingid
Appears in Collections:UT - Computer Science

Files in This Item:
File Description SizeFormat 
G11rnc.pdf
  Restricted Access
Full Text1.06 MBAdobe PDFView/Open
Abstract_ G11rnc.pdf
  Restricted Access
Abstract366.34 kBAdobe PDFView/Open
BAB I Pendahuluan_ G11rnc.pdf
  Restricted Access
BAB I372.06 kBAdobe PDFView/Open
BAB II Tinjauan Pustaka_ G11rnc.pdf
  Restricted Access
BAB II769.57 kBAdobe PDFView/Open
BAB III Metode Penelitian_ G11rnc.pdf
  Restricted Access
BAB III735.08 kBAdobe PDFView/Open
BAB IV Hasil dan Pembahasan_ G11rnc.pdf
  Restricted Access
BAB IV653.51 kBAdobe PDFView/Open
BAB V Simpulan_ G11rnc.pdf
  Restricted Access
BAB V371.47 kBAdobe PDFView/Open
Cover_ G11rnc.pdf
  Restricted Access
Cover373.35 kBAdobe PDFView/Open
Daftar Pustaka_ G11rnc.pdf
  Restricted Access
Daftar Pustaka373.48 kBAdobe PDFView/Open
Lampiran_ G11rnc.pdf
  Restricted Access
Lampiran532.83 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.