Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/47501
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuhiyat
dc.date.accessioned2011-07-07T03:56:51Z
dc.date.available2011-07-07T03:56:51Z
dc.date.issued2011
dc.identifier.urihttp://repository.ipb.ac.id/handle/123456789/47501
dc.description.abstractA system of linear equations is often involved in science and engineering problems. There are many methods available for solving system of linear equations, both analytically and numerically. Kaczmarz method is one of iterative methods for solving such system. Orthogonal projections are used in this method. The sequence of approximate solutions generated by algorithm for this method is convergent for an arbitrary initial solution. A proof of the convergence is given. If the system of linear equations is consistent, then the sequence of approximate solutions converges to the exact solution. This shows that Kaczmarz method is a good method. Implementation of this method is done using MATLAB R2008b. Some systems of linear equations are generated, and then solved numerically using the program. The results show that the more iteration used in the solution approximation, the smaller norm of residual obtained.en
dc.publisherIPB (Bogor Agricultural University)
dc.subjectBogor Agricultural University (IPB)en
dc.subjectsystem of linear equationsen
dc.subjectKaczmarz methoden
dc.subjectorthogonal projectionen
dc.subjectapproximate solutionen
dc.subjectconvergenten
dc.titleMetode Kaczmarz untuk menyelesaikan sistem persamaan linearen
Appears in Collections:UT - Mathematics

Files in This Item:
File Description SizeFormat 
Abstract_ G11ruh.pdf
  Restricted Access
Abstract283.47 kBAdobe PDFView/Open
BAB I Pendahuluan_ G11ruh.pdf
  Restricted Access
BAB I284.92 kBAdobe PDFView/Open
BAB II Tinjauan Pustaka_ G11ruh.pdf
  Restricted Access
BAB II348.37 kBAdobe PDFView/Open
BAB III Metode_ G11ruh.pdf
  Restricted Access
BAB III287.27 kBAdobe PDFView/Open
BAB IV Hasil dan Pembahasan_ G11ruh.pdf
  Restricted Access
BAB IV838.98 kBAdobe PDFView/Open
BAB V Simpulan_ G11ruh.pdf
  Restricted Access
BAB V284.15 kBAdobe PDFView/Open
Cover_ G11ruh.pdf
  Restricted Access
Cover314.6 kBAdobe PDFView/Open
Daftar Pustaka_ G11ruh.pdf
  Restricted Access
Daftar Pustaka279.35 kBAdobe PDFView/Open
G11ruh.pdf
  Restricted Access
Full Text2.03 MBAdobe PDFView/Open
Lampiran_G11ruh.pdf
  Restricted Access
Lampiran775.69 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.