Please use this identifier to cite or link to this item: http://repository.ipb.ac.id/handle/123456789/28391
Title: Biochemical characteristics of chitosanase from the Indonesian Bacillus licheniformis MB-2
Authors: Ekowati, Chasanah
Hariyadi, Purwiyatno
Witarto, Arief B.
Hwang, Jae Kwan
Suhartono, Maggy Thenawidjaja
Issue Date: 2010
Publisher: IPB (Bogor Agricultural University)
Abstract: Bacillus licheniformis MB-2, isolated from a hot spring water in Manado, Indonesia, secreted a unique chitosanase. Media consisted of 0.24% chitosan, 0.25% casiton, 1% MgSO4, 1.4% K2HPO4, 0.02% CaCl2•2H2O, 0.002% FeSO4•7H2O (w/v) was used for enzyme production. Purification of the enzyme through the hydrophobic interaction chromatography system (butyl Sepharose 4 FF) resulted in two major active fractions; the F2 fraction was shown as a single band at both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram analysis with apparent molecular mass of 75 kDa. The enzyme worked best at 70°C and pH between 6.0 and 7.0. When incubated at 70, 80, and 90°C, the t1/2 values were 26.56, 18.44, and 16.74 min, respectively with the k constant being at 0.026, 0.037, and 0.04/min. When heated at 90°C, the enzyme retained its activity up to 8 h in the presence of 1mM MnCl2. The enzyme's activity was unaffected by the presence of 1 M NaCl and 6 M urea but was decreased by 2 M of guanidine hydrochloride. Albeit the enzyme did not degrade colloidal and glycol chitin, it hydrolyzed glycol chitosan up to 0.8% and colloidal chitosan up to 11%. The 85% deacetylated (DDA) soluble chitosan was the most susceptible to this enzyme, followed by 90% and 100% DDA chitosan. The K m app values of the 85, 90, and 100% DDA soluble chitosans were found as 0.23, 0.24, and 0.58 mg/mL, whereas the Vmax values were 843, 668, and 261 U/mg, respectively. The hydrolysis products of F2 chitosanase at 24 h incubation (70°C) were pentasaccharide (GlcN)5 and hexasaccharide (GlcN)6. The prelimiaary test showed inhibitory effect of chitooligosaccharides resulted from enzymatic degradation toward Pseudomonas aeruginosa, Salmonella typhimurium. Listeria monocytogenes, Bacillus cereus, Escherichia coli, and Staphylococcus aureus.
URI: http://repository.ipb.ac.id/handle/123456789/28391
Appears in Collections:Faculty of Agricultural Technology

Files in This Item:
File Description SizeFormat 
50.docPublication26 kBMicrosoft WordView/Open
50.pdfPublication68.63 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.